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SUYMARY

The problem of flow of 2 compressible fluid past a body
with subsonic flow at infinity is formulated by the hodograph
method. The solution in the hodegraph plane is first con-
structed about the origin by superposition of the partlcular
integrals of the transformed equations of moticn with a set
.0f constants which would determine, in the limiting case, a

» known lncompressible flow. This solution is then extended
outside the circle of cenvergence by analytic continuation.

. : The previous difficulty sf the Chaplygin method »f slow
convergence of the series has been overcome by using the as-
ymptotic properties of the hypergeometric functions se that
numerical solutions can be obtained without difficulty. It
is emphasized that, for a solution covering the whole domain
nf the field of flow, both fundamental solutions of the hyper-
geometrical differential ecuation are reguired.

Explicit formulas for numerical calculations are gilven
for the flow about a body,-such as an elliptic cylinder, and
for the periocdic flow such as would exist over a wavy surface.

Numerical examples based on the incempressible flow so-
lution of an elliptic cylinder of thickness ratio of 0.6 are
computed for free-stream Mach numbers of 0.6 and 0.7.

The results of this investigation indicate an appreciabdle
distortlon in the shaps of the bodies in compressible flow
from that of incompressidle flow, which nescessitates a series
of computbtatione with various values of the geometric parameter
in order that the desired body shapes can be selected for a
given Mach number. It also is shown that the breakdown of ir-
[~ rotational flow depends solely upon the occurrence of limiting
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lines, which, in turn, are dependent on the boundary condi-
tions,

The numerical caleculations show that at a free-stream
Mach number of 0.6, irrotational supersonic flow exists up to
a ldcal Mach number of 1L.25; whereas breakdown occure at 1.22
for a Mach number of 0,7.

INTRODUCTION

When a flow of nonviscous incompressible fluid is irrota~
tional, it 18 well known that the problem can be reduced to
either the problem of Dirichlet or that of Neumann, and that
there exists a unigue solution for any given boundary condi-
tions. When the fluid is nonviscous but compressible, the va-
riation of density makes the mathematical problem very diffi.
cult and complex. In this case, a pure pbébtential flow through-
out the reglon is not always poseidble for a given body; this ’
depends very much upon the condition at infinity. If a certain
epeed of the flow at infinity is reached, regions within the
field of flow will be created in which the irrotational flow
does not exist owlng to the appearancs of "limiting lines."
Such regions were picturesquely designated as "forbidden re-
glons" by Th, von Kdrmédn (reference 1), and they appear when
the local speed of the flow considerably exceeds the local
speed of sound. It has been shown that the occurrence of lim-
i1ting liner is directly connected with the breakdown of irrow
tational flow and with the resultant increase in drag of the
body due to shock waves. In other words, if there is a limit-
ing line in the field of flow, the isentropic irrotational
flow must break down. However, the irrotational flow may break
down before the anpearance of limiting line due to the insta-
bility of the veloeity fisld. On the other hand, shoeck waves
can oceur only in supersonie flow. Therefore, there is no
danger. of breakdown of 1sentropic flow if the whole field of
flow ié subsonic, OConegequently, the Much number correspond.-
1ng toithe first appearance of local spsed equal to that of
sound dan be designated as the "lower critical Mach number';
and theg Mach number corresponding to the first appearance of
limiting lines can be designated as the "upper critical Mach
number.r The actual critical Mach number for a given body
will bel influenced by the boundary layer and hence the Reynolds
anumber.,! However, it musgt lie between these two limiting crit-
ical values. (See reference 2.) Thus, knowledge of these
critical speedg of the flow are essential for the design of
efficlient gerodynamic bodies,
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To determine the critical Mach numbers, the general prob-
lem of flow of a compressible fluid about a given body must
be solved. The oftsn-used methods treating such a problem
are Janzen-Rayleigh's method of successive approximations and
Glauvert-Frandtl's method of small perturbation, The latter
method has been extended recently by both Hantzsche and Wendt
(reference 3) and O, Kaplan (reference 4). Indeed, both meth-
ods yileld valuvuable information regarding the effects of com-
pressibllity and are useful for many practical design problems,
particularly the determination of the lower critical Mach num-
ber of & glven body. 3But, so far as the general problem of
limiting line and upper critical number is concerned, none
seems to be adequate, owing to the doubtful convergence of
such successive approximations at the required high Mach num-
bers.

An entirely different approach first was made by Molenbroek
(reference 5) and Chaplygin ?referencé 6) by introducing the
velocity componente instead of the usual space coordinates as
independent variables. The advantage of the method is that,
instead of a nonlinear differential equation as is the case in
the physical plane, it leads to & linear one in the velocity or
hodograph plane. The particular solutions of this linear equa-
tion are found %0 be products of trigonometric functions of the
angle of ineclination of velocity vector and hypergeometric
functions of the magnltude of the velocity vector. It is then
possible to construct a gensral solution from the particular
gsolutions of the differential eaquation. The difficulty, how-
ever, is that the character of the field in the physical plane
to whleh the solution in the hodograph plane corresponds cannot
be determined beforehand. This difficulty prevents the exact
formulation of the boundary valus problem in the hodograph
plane. Chaplygin has overcome this handicap by first choosing
a "'suitable solution" in the hodograph plane and then procesding
to find the corresponding flow in the physical plane. The
gsuitable solution is one which, in the limiting case of zero
Mach number at infinity, becomes identical with the incompress-
ible flow over a body similar to¢ the body concerned. This will
ensure the satisfaction of the proper boundary conditions in
the physical plane. Furthermore, such & solution would be ex-
act both for the subsonic and for the supersonic regions, as
no approximation is introduced. Therefore, it is particularly
suitable for the problem of determining the upper eritical Mach
nunber for a given body, as limiting lines occur only in mixed
subsonie and supersonic flows. This method 1s followed in the
present report, except for the introduction of the transformed
potential funetion ,, for easy calculation of the space
coordinates.
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For the flow around a body, Chaplygin's procedure will
lead to a solution in the form of an infinite series, each
term of which is a product of a trigonometric function and a
hypergeometric function. To put the method on A firm founda-
tlion, it 1s necessary to estadlish the convergence of the in-
finite serles. Chaplygin himself has done this for the sub- -
sonic region. Thus, only the extension to include the super-
sonic region remains to be completed. 1In part I of this re-
port, the general properties of hypergeometric functions of
large order are investigated in preparation for the proof of
the convergence given in part II. The egsential point in
these parts is to establish the upper and lower bounds for
the hypergeometric functions so that the sum of the infinite
series can be discussed. It is appropriate to mention hers
that for the proper representation of the general solution
~in the hodograph plane, both fundamental solutions of the hy-
- Ppergeometric differential equation are required. This fact
has not been consideresd by many of the previous investligators
in this fleld. 1In other cases (reference 7) the investigator
has chosen to work with only the first solution.

The general solution constructed by the Chaplygin method
ig really an existence theorem, The extremely slow. conver-—
gence of the series makes numerical calculation very difficult,
if not impossible. This, in fact, constitutes the main diffi-
culty of the method. In part III of the present report, this
difficulty 1s svercome by using the asymptotic properties of
the hypergeometric functions. The result is the separation of
the solution in the hodograph plsane into two parts. One part
is of closed form and 1s the product of a universal funcfion
of the velocity and the same solution as for inconmpressible
flow but vith a velocity distortion, or velocity correction.
For instance, the first part .of the stream function for the
compressible flow 1s equal to the product of the universal
function of velocity and the strear function for the incom-
pressible flow with the magnitude of velocity modified by a
given rule. The other part is an infirite series which con-
verges rapldly everyvhere except in a small region on both
sides of a critical circle with a radius equal 40 ¢q = ¢ 4in
the hodograph plane. In practice, by using only a few terms
of the infinite series, this zone of slow é&onvergence can be
limlted to such a small interval that it is of no comnsequence.
Thus the Chaplygin procedure 1s improved to a point where ac-
tual numerical cnlculations can be made without difficulty.

As a result of this part of the study it becomes clear



NACA TN No. 995 5

that by the mere substitution of a different speed scalsg, or
velocity distortion, in the solution for an incompressibdle
fluid, an accurate enough solution for the compressible flow
cannot be obtained. PFor if this were the case, then not only
the second part of the solution (the rapidly convergent se-
rles given by the present method) would be negligible, but
also the value of the multiplying universal function of veloc-
ity in the first part of the solution would be unity. How-
ever, the value of the second part of the solution is not
snall compared with that of the first part for & speed near
that of sound, asnd the value of the multiplying function of
veloclity is.far from unity. In other words, the usual so-
called hodograph method (reference 8) cannot, in general,
yield satisgfactory results, for mixed subsonicec and supersonic
flow. On the other hand, the present method does show that
the second part of the solution 1s geroc and the multiplylng
function in the first part takes the constant value of unity,
if the isentropic exponent is equal to -1. This means that
for thie particular case, s simple speed distortion 1s suffi-
clent. This is, of courseg, in accordance with the previous
investigation of ¥on Karmén (reference 1) and Teien (reference
9) and L. Bers (reference 10),

Furthermore, the present method also shows that the rules
of speed distortion for the first part of the solutlion can be
used .only for subsonic flow and that there is a singularity at
the local sonic speed. For regions of supersonic flow, the
first part of the solution involves both the incompressibdle
stream function and the incompressible potential function,
Thus even without considering the second part of the solution,
there 18 no possibllity of making the compressible stream
lines coineide with those for incompressible flow in the hodo-
graph plane by a simple stretchinz of the speed scale. The
mathematical baslis of this faet 1s the change in character of
the differential eguation from elliptic to hyperbolic in the
transitlion from subsonic to supersonic fiow. For the super-
sonic reglons, it 1s not possible to use a real transformation
of the veloecity variable to convert the differential equatian
of flow to the Laplace equation, and thus make a simple con-
nection between the compressible and the incompressible flows.
This.is one of the difficulties of the previously proposed
hodograph method, In fact, writers using this method must
generally limit their calculstion to subsonic speeds. (See
references 9, 10.) ¥Now this 1limit is removed, and the whole
field of mixed subsoniec end supersonic flows can be treated at
once with ease.

For the purely subsoniec flow, the second part of the
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solution is small compared with the first part and may be
neglected. Furthermore, 1f only the zero stresamline repre-
senting the body is considered, the universal multiplying
function of wveloclty is of no importance,. In other words,

fer this case, a simple speed dlstortion from the solutlion of
incompressible flew is .sufficlent to give accurate enough re-
sults. However, the subject of the "best" velocity distor-
tion rule in subsonic regions has been the subject of many
discussions., (See references 1 and &.) The present annlysis
id considered te settle this aquestion. This is due to the
fact that the present velocity distortion rule 1s obtained
from the asymptotic properties of the hypergeemetric functions,
and that such properties are definite and uniquse. ©DTherefore,
the resultant velocity distertion rule 1s not the result of
uncertalin speeulation. PFurthermore, it is also the best rule,
becaunse the analysis implies that this rule will make the
second part of the sclution, or the correction terms, the
smallest. This distertion rule 1s found to coincide with that
of Temple and Yarwood. (See reference 11.)

For the pursely supersonic flow, the second part -saf-~the -
golution is again small compared’with the first part and may
be neglected, In fact, the solution then can be reduced to
that of the simple wave egquation with the inclination of the
veloclty vector and the distorted velocity as independent va-
rlables, This is, 3f course, the counterpart of the fact that
by a simple distortion in velocity, the differential equation
for subsonic flows can be reduced to the Laplace equation.

The usefulness of thie new result for purely supersonic flow
has yet te be exploited.

Once 'the general problem of mixed subsonic and supersonic
flow around a body is solved, the determination of the upper
ecritical Mach number or the Mach number for the first appenr-
ance of the limiting lines is a simple matter. This problem
s discussed in part IV of the report. 4 simple methed is de-
veloped, based on the properties of the limiting line as given
by von Kidrmédn (reference 1), Ringlebd {reference 12), Tollmien
(reference 13), and Tsiexn (reference 2)/S

To test the practicability of the mathod developed, twe
numerical exanples are worked out in detail, However, in
order tq reduce the amount of computational work and in view
3f the limited time availlable, a slightly different procedure
actually is ussd. This procedure is only approximate but is
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believed to be sufficiently accurate in the supersonic reglon
to give a satisfactory description of the most interesting
features of such flows. The examples chosen ars derived from
the incompressible solution of an elliptic cylinder of thick-
ness ratio 0.6. The free-stream Mach numbers of the compress-
ible flow are 0.6 and 0.7 for these two examples, The first
case gives a smooth flow over an "elliptic" cylinder of thick-
ness ratio 0.42. The maximum local Mach number 1g approxi-
mately 1.25. Thus a considerable supersonic region exists.
The second case gives & flow with limiting line.

Finally, it must be said that owing to the limitation of
time, only the case of flow without ecirculation is lnvesti-
gated in detail. The explicit formulas for numerical calcu-
lation are given for two casges: (a) TFlow around a body such
as an ellipse, (b) periodie-flow. -patitern_such ¢ as that over a
wavy surface. However, it is believed that more general.cases
can be studied by & slight extenslon of the present results
and use of the same method of approach.

This investigation, conducted et the Guggenhein
Aeronautics Laboratory, California Institute of Technology,

wvas sponsored by and conducted with the finanelal assistance
of the National Advisory Committee for Aeronasuties.

NOTATIONS

The symbols used in this report are classified according
to the following groups:

A, Physical Quantities

x,y Cartesian coordinates
u,v the velocity components

q the absolute value of the velocity veector

(]

the inclination of the velocity veetor with z-axis

density of the fluid

T

density of the fluid at q = O
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P pressure within the fluid corresponding to p

Po pressure at g = O

Y ratio of the specific heats

c the local speed of sound

C, the speed of sound at gq = 0

u the value of q &t infinity, assuming parallel to the
z;ax:s. With subseript, however, 1t_may be a function

B, Hydrodynamic Functions in the Physical Plane

z = X + 1y

Wolz) = 9o(x,7) + t¥,(x,y) eomplex potential for incompress-
1dle flow in ¢

Dy veloclty potential for incompressible flow _
Vo stream function for incompressible flow
® velocity potential for compressible flow

W' stream function for compressible flow

0. Hydrodynamic Functions in the Hodograph Plane

w=1u - 1v

Wolw) = ®o(u,v) + 1i¥s(u,v) complex potential for incompress-
ible flilow in w

wolu,v) - velocity potential for Incompressible flow

VYo{u,v) stream function for incompressible flow

AO(W) = gw - Wo(w) = Xo(u.v) - iob(u.v) transformed complex
- 3% potential function
Xo(u,v) = ux + vy - wol{x,y); =x = a'°.
u
¥y = 3% transformed potential

ov function
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W(W;T) the complex potential function for compressibdle flow
Yylu,v) = Im-{W(w;T)} stream function for compressible flow

A(w;T) transformed complex potential function for compress-—
ible flow

x(u,v) = ux + vy - o(x,y) = Rl {A(W;T)} transformed potential
function for com-
pressible flow

X
Bplu,v) = ?ﬁf

aO'o

Qo(unv> = =3

Ylgsd) = wl(q.é) + Wa(z)(q.ﬁ); wl(q,é) represents the con-
' tribution by the
velocity distorsion;

¢a(z)(q.6) stands
for the transformed
infinite series,
where the super-
gscript 1 may ei-
ther mean 1 the
inner, or o the
outer solution. In
‘the case of coordi-
nates, the notation
is exactly the same.

6,(a)(7) = 3, (1)aB (o) 4 BaldEy(T)
v S 2 T ()
Gy (@) (1) = Fp(myagy(e) , ZnlEy(T)

FE(T,TO(T,)

Evsl(m)(T) =21 -EU, I(T)Agn(d') + BnA‘F"U-l(T)
vl £01,)TV(T,)
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D, Parameters and Variables
v poeltive rational numbsrs

m,n 7posgitlive integers

a denotes 1 or 2 when used as superscript with a bracket
or o= /Y31
Y - 1
B denotes the dependence an £ when used as subscript
or B = 1
] Y - 1
afz
A= 2(2 ) % _E__ L the ratio of the distorted speed
(1 + a)® 287, 2(7) to that at infinity
'z
T=_]:.__.q.-._§.
2B ¢,

-1 /a®T - 1
B = cos8 [ ——
2B T
E, 71 With superscript or subscript they denote some functlons
of T or stand for the two familieg of the character-
istic parameters & + W(T), & ~« w(7T) of the partial
differential equations for WV(g,d) or x(q,9).

¢ complex variable or ¢{(T) & function of T

M, = 2 the Mach number at infinity

Ca
Ty = lf%!
2B Co
€ geometrical parameter of the body
A Laplaclian or difference between exact and epproximate

values of & function or a constant



NACA TN No, 995 1l

B, Hypergeometric Functions

a,b,¢c parameters of the hypergeometric functione. In par-
ticular, a,, b,, ¢, are defined by (29).

EM(T) = F(ay, by; cyp;T) first integral of the hypergeometric
equation assoclated with the
stream function

E__U('r) = F(l + a, - ¢,y 1 + by = cp; 2 - ey T)

v :
' -V
. ‘T T . T‘(a )T(b )
F(T) = _ [ Ll & ™R ()
(28Bcy®) T(e,=1)T(ey) LT(14ay-cy,)T(L+by-c,,) v
_]I . L}
T(ey) F D(T)J sscond integral of the same eguation
T(2-c,)
Gy(T) = q®Y Py(7)

by (1) = F(1l+a., 1+b,; l+c T)

=V, 1 v

B (PX(n) = B (7)/E (7))

vi

_:E_'_v’l(r)(T) = _F_v,]_('r)/:_F_U(T:L)

_12';),(75 =B (1) + 17,7
R,(T) = E*U(T)‘
¢, (1) = arg E* (T)

If any function or a constant is associamted with x(q,%),
it will be marked on top by a symbol ~, such as EU(T).
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" PART 1

DIFFERENTIAL EQUATIONS OF COMPRESSIBLE FLOW AND
FROPERTIES OF THEIR PARTICULAR SOLUTIONS

1. Equations of Motion

It is proposed to study the irrotationsl steady motion of
an inviseclid nonconducting compressible fluid in an infinitely
extended domeln containing & cylindrical body with ite axls
perpendicular %o the constant.veloecity at infinity. The flow
is then two-dimensional. Let x and y be the Cartesian co-
ordinates and u and v the velocity components parallel to
the x- and tho y-~axis. The dynamical equations governing such
a motion, in the absence of body force, are

pu %% + PV %% = - %% - (1)
oL L A ' (2)
pu < P Sy e

Here p 18 the pressure and p the density of the fluid,
both belng continuous functions of x and y. In addition,
the following equation of continuity must be satlisfied:

2 (pu) + 2 (pv) =0 (2)
ox ‘

Purthermore, since the velocity ie constant at infinity, the

flow is irrotational there, Then, according to Thomson's
theorem, if the pressure is a function of the density alone,
the flow will remain lrrotational; that is,

ov _gu
3% ~ 0 (4)

In the case of flow of an inviscid nonconducting gas, the
thermodynamic change of state of the gas is adiabatic, If
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the flow 1s assumed to be continuous, excluding shock waves,
then the relation between p and p must be that of an
isentropic process:

p = constant p7 (5)

where ¢« 418 the ratio of the specific heats,

As in the case of incompressible flow, there are more
equations than the number of the variables. However, by vir-
tue of equations (4) and (5), the dynamical equations (1} and
(2) reduce to & single differential equation and can bde inte-
grated easily to give a2 relation between the pressure and the
magnitude q of the veloecity: namely,

Y
. - 3 ye—1
P =P, {: - :L_—E L VY1 yith g = uB + v8 (8)

Here Po and cé ere respectively +the pressure and the

speed of sound at the stagnation point gq = 0 and ¢ =,/ %E;

It is possible to obtain a similar relation between p and
q by means of equation (5):

i
e v o 1 o271
T, (o1 s)

where p, denotes the value of p at g = O.

After integrating the dynamical equations, the velocitles

w and v can be determined from the kinematic conditions
specified by equations (3) and (4). By eliminating p from
equation (3), the result is

(-2 _Zve, (4 YN . (8)
c® 7/ 3x c® 3y c®/ 3y
where ¢% = yp/p and thus can be calculated in terms of the

speed by equations (6) and (7), It is of interest to note
that the equation of continunity (8) now, unlike the case of
lncompressible flow, becomes dependent on the dynamlical equa-
tions and, consequently, is nonlinear. This change in the
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character of the fundamental equation makes the direct solu-
tion of the problem in space coordinates very difficult.

2., Transformation of the Differential Equations

The assumption of irrotationality implies the existence
of a2 velocity-voterntial for such a flow, If this function is
introduced to eliminate u and v, equations (4) and (8)
would ‘give rise to & nonlinear partial difrerential equation
of the second orvder. The problem is further complicated dy

' . the possible appearance of supersonic regions, or rzglons

where the speed of flow is larger than ths local scnic speed,
This means that for some part of the domain, the equation is
of the elliptic type; while in the other part, it i3 of the
hyperbollis type, Thue the equation not only is nonlinear but also
1s of mixsd type, 2od there 1s as yet no snccessful method to
deal with 1t dlivectly in the phwsical plane. Molenbroek (ref-
erence B5) and Chapiveln (reoference 6) male sore progress in
solving the provlem by transforming the equations from the
physical to the hoCograph plane in which u &nd v are taken
as the injependsnt variables, If this is done, the differen-
‘tial eguations becomes linear and thus can be solved by well-
known methods.

Let the transformation be deflned by

w = ulz,y) . (9)

v = vix,y) ' " (10)

If u and v are continuous functions of x and y with
continuous partial derivatives, and 1f the Jacoblan ’

is finite and nonvanishing, a unique inverse trans-

(a(u v)
formatlon exists. Under these conditions,equations (8) and
(4) are easlly transformed into

3 2 .
<1_E-.).al+?_‘.1l_a_’i+<1-1’-—>§i=o (11)
c®’ av c® v c®’ 2u :

89X ¥ _ 9 (12)
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Corresmonding to m(x.y) in the physieal plane,there is in-
troduced here a function X(u,v) defined by

e ot b vr - e x e B o o X 13)
X=xu;+§rvlllqa,_1.t.au, ¥ v (

While equation (12) s satisfied identically, equation (11)
becomes

3% % 2 2
(1 - ——) 3%% , 2vu 3 <1 - ¥ Y38 X <0 (14)
dve c® avcu c®/ du”R

As ¢ 1is a funetion of q alons, the equation fer X(u,v)
is then. linear. PFrom equation (13) it is recogniged.that if
X(u,v) 1s known, & ocne-~to-one correspondencs between the
space coordinates and the velocity components can be easily
established.

However, it is also clear that this function is incon-
venlent for obtaining the streamlines and the flow in the
physical plane. To solve this part of the problem, a plan
may be adopted similar to Chaplygin's by introducing both the
potential function ®(x,y} and the stream function Wx,y)
defined by: .

w88 220 | (15)
x Sy
vV oV
u = —— = -
P Py 5y PT Po 31 (18)

From these definitions are obtained immediately the following
equivalesnt relations:

o
R &
]

uwdx + vdy - (17)

pLav

o ~pvdx + pudy (18)

For the subsequent calculations, it was found convenlent %o
introduce the polar eoordinates in the hodograph plane de-
fined bdy:
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w s q cos 0, v = q sin 6 (19)

where 6 1is the inclinatlon of the velocity vector to the x-
axis. Functions dx and 4y can be solved for from equa-~-
tions (17) and (18). As dx. and dy are exact differentials,
the condittons of integradbility then gives -

o p Q®\ 1 3¢ .
= - =2 (1 - S5) = = (20)
3q p (_ 3> q 38 -
ey _peav o
- = - . . : 1
< 56 " p aq o (21)

By eliminating @ between equations (20) and (21) an eéua,
tion for VY 1is obtained: _

“”'a“’ <l+-—-->q_ (1--—-a-g‘i’_o  ('22)

Equat*on (14) can also be transformed in polar coordi-
nates. The procedure is straightforward and yields

a
@ X, _Q> (1_.___ ...-.X=o (23)
3q” c?/ 3%

There 1s an additibnal relation between X and o de-
rived from equation (13): )

P = aXg - X (24)

Since © is connected with W. this relatlon ensures that

¥ &nd X are properly connected and represent the same flow
pattern in the physical plane. It can be thus consldered as
the equation of compatidbility. Hguations (22), (23), and (24)
are the three fundamental equations 1in .the present probdlem
dealing with the two-dimensional flow of a compressible fluid.
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3. The Particular Solutions of the Differential Egquations

As the differential equations for V(q,8) and x(q,8)
ere llnear, a general solution can certainly be built by
superimposing the particular integrals of the equations. Teo
obtain the particular integrals, let WV(q,6) and X(q,9)
be of the following forms:

Yia,8) =.qv ¥y, (a) olvO

X(q,8) = qv,xv(q).eive

where v 1s any real number., By substituting in equations
(22) and (23), the equations satisfied by V,(q) and ¥%,(a)
are: ’ '

2 2 “any 2
a av
W, (ap 1+ ) oy (v r 1) L v, = 0 (25)
aq &/ e e
q c q ¢
2 2 2
2 4%y ( . aq > aXyp q
2 o 2y + 1 - 2. —_— + ly - 1 Xy = 0
q dq® c?® 1 dq ( ) c® P ' (26)

Now each of these equations can be further reducéd by changing
the independent variable. The appropriate transformation is
found to be

1 g° 1
_— . with =
26 ¢ ° Sl

T =

By expanding the gas t0 zero pressure, or vacuum, the maximunm
velocity is obtained. Equation (6) shows that the meximunm

=/ 2 :
speed 1s q . = ¥ o1 ¢,. Therefore, the maximum value of
T is unity, Similarly, it is found that for the speed of
the flow equal to the local sonic speed, T = ——JL——, equa-

20 + 1
tions (25) and (26) then beconme

T(1 -~ TP, (1) + [cv - (ay + by, + I)TJWU'(T) - apbu¥,(T) = 0
(27)
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T(L = ThM(T) + [cv,- (e, + B + by, + B + 1)T}KU'CT)

o= ey + BBy, + BIX(T) =0 (28)

where

a, + b, = v -8, a,b, =~ % Bu(v + 1), and oy, = v+ 1 (29)

These are the hypergeometric-  equations, of which equa-
tion (27) was first obtained by Chaplygin in 1904, (See ref-
erence 6,) The differential equation of this type has three
regular singularities at O, )1, and 4+, If the differences of
the two exponents at the respective singularitles; namely,
¢ -1, a-"5b a4+ b~ c, are not integers or zero, the two
fundamental independent solutions are F(a,b; ¢; T) and
T™"¢ P(1 + a~¢, L +b=-c; 2«c; T). They are single-val-
ned and regular in the whole plane with & cut from +1 %o +wm.
The function: P(a,b; c¢; T) known as the hypergeometric fune-
tion of general parameters a, b, and ¢, is defined by the
hypergeometric series which ig absolutely and uniformly con-
vergent when I[T| < 1, provided Ri{(c - B -~ b) > 0. For
17| > 1,  analytiec continuation has to be used. Furthermore,
1t-4s normaliged so that at T = 0 '

Fa,byc; 0) =1 (z0)

-

Hence, the particular solutions of equation (27) are

Flay, byicp;T), T'7% 31 + Bap=Cy, 1 + By = Cp; 2 = CuiT)
(81)

The particular solutions of eauations (28) are

Fla, + B; by + B; cu; T)y T VP F(1 +a, ¥B - cy, 1+ by

T .+ B - cy; 2 - CD}.T) (32)

%er§ 8y bv' and c, are parameters defined by equation
29},
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When v 1s a positive integer while a,, and b, re-
mein as they are, the second integral will reduce to a con-
stant multiple of the first one. This case was first studied
by Gauss (reference 14}, who found a second integral involv-
ing a logarithmic term by considering the limiting value of

the integrals given as v tends to an integral value. The
method has been further developed by Tannery (reference 15)
and Goursat (reference 16). However, the form regarded as

conventional nowadays was that obtained by Frobenius' general
method, According to this method, the pair of. fundamental:
solutlions of a hypergeometric equation are

Fle,b; n + 1; T), X T " {-rn F(a,b; n + 1; T)log T

2 Qn(l)(a.b; T) + P (1)(T)W (33)

n-1 J
when ep = n + 1, n Ybeing a positive integzer; and
Q (1)(a,b;-r)= PMuo +1) DNa + w)(b + m) ‘I’(a’b; .m) Tni

P(a)Tc,b) = Mm +1)0Mn + 1+ m)

_1(1)(1.) (-1)2 D{n + 1) Mn + 1) z (- 1)1111"(9. -+ n)(b~n+ m)Mn-mn) T (34)
l(a)T(b) ' Pm + 1)
Mm-1 T m
Wobsm) = [, L 1.y &
r;o a+1r b+ r n+ls+ r T

Here a,b may be elther an, b, or ap + B, by, + B de-
fined in equation (29) according to whether the system (33)

is referred to as solutions of eguation (27) or (28). And
KEn can be determined 80 that the product of the second inte-
gral and ¢° satisfies the condition (30).

In view of the fact that the second integral in (33)
does not constitute a family of solutions with the second in-
tegral given in (31) or (32), it.is very desirable to define
a new functlion as segcond integral which will be continuous in
v as well as in T. Let gv(T) denote the first integral
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Fla,b; ¢,; T). As a second integral, take the linear combi-
natlon of the solutions:

(1) = K, <T(1 = ep)T(al)l(0)E(T) + I(1 - cp)T(1 + a

1w
C e T b - et D E (M) (35)

J

where

2 - c.3 T)

E_U(T) =l +a~c.,, 1 +D-c v

v v

This is evidently a solution and valid for all values. of v.
The constant KU is determined sublect to the followling con-
dition:

qau F‘D(T) = 1 for Tz 0 L (36)
The value of Kv then is found to be

K™ = (28eY Pley, - 1)0(1 .+ & « ¢, )[(1 + b = o)

Ueing the relation
Plep)l(1 - cyp)

™t csC Cyit
equation (35), when multiplied by qav. will define a new
fanction &u,(7): a, b £ - n :

n [% L(a)l(p) 77 B, (1)
sin ey [H(ep)liey = DL + a = ¢ IP(1 + b - cy)

- 2.,(T) ] (37)
P(CU - 1)P(2 hd CU)

EU( T) =

When v t%takes integral values, the expression in the
bracket vanishes; however, the limit of the ratio exists:

§,(7) = lim G (T)  (38)
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. The usual definition of the limit ofla quotient gives

6 (1) = (- 1\n+1fa D(a)0(B) 7% By(T) 8 (1) ]

L% B(v + 1IP(w)T(a - 0IT(D - ©)  OP D(wI(1 - v __

By considering separately the first n terms in ,E‘DPT). as
'(l -« v) has poles at Vv = n, a streightforward reduction

yields:
G (1) = ¢, T8 log T (T) + T Q(a) (1) + Pndia)(;) (39)
where o
(2) - (-1)°*2 [ _
W) = (e - e a5 ;Z; Vo +m) + (o 2 a)
- \IJ(cn + m) - Wlm + 1)] ffa + )b + m)
- I'(e, + a)l'(m + 1)
. P (3)(1) - 1 i (-1)® Pla-n+m)t (b-n+m)D (n-n) B
-t F(a)T(a-n)l(bwn) L. F(m + 1)
n+1
0 = («1) T(e)'(v)

B DMa)'(n + 1) (a - n)(b - n)

» .
and Y(f{) denotes the derivative of logI'(t), It ecan dbe

seen that the difference between (33) and (38) 1lies ouly in a
consta? nultitle of the first integral which has been absorbed

(1),

In the followlng discussions, the two fundsmental solu-
tions of the hypergeometrlc differential equation will be
taken as F (T) end q-3V & (7). The normalization condi-

tions given by (30) and (36) are chosen for the continunous
passage of a compressible to an incompressible flow. Ultimate-

. ly, these functions are again defined in terms of power weries
which are absolutely and uniformly convergent within the do-
mgin iIT{ < 1, However, since the maximum value of T at-

. talnable by the fluid is unity, the continuation of the solu-~

tions beyond the unit cirecle will not be discussed here,
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Thus E,(7) and ¢ 2VG,(T) denote the two independent

integrals of equation (27) where v 18 any positive number.
The particular solutions of equation (22) are then:

qvivtr) [Av(z) cos V¥ + Av(a% 51? vﬁ] . q‘vgv(T) [Bv(l)cos vé

+ Bv(") gin ms:‘ (40)

where Av(l), Au(3>, Bv(l). and BD(a) are constants, Sim-
ilarly, those of equation (23) are

q?ﬁ;(T) [55(1) cos VLI + Ev(g) gin vﬁ} . g VG [gu(l)cos vd

4+ 55 et vﬁ] (41)

where EU(T) and 4‘3u5 (T) are the two independent inte-
grals of equation (28) and xv(l). Av(ﬂ), Bu(l), and Bv(a)

-

are constants.

In addition to thege solutions, there are two other inte-
grals each of which 1is function of one variadble only.
Assuming V =V¥(q) or WV(¥), then wequations (22) and (23)
yield K respectively:

e, ¥ and e, /(1 - 7k ar (42)
g, % and ¢ /(1 - nPar (43)
. T

whieh correspond to the fundamental solution of the lLaplace
equation. :

As ¢, approaches infinity, all these particular solu-
tions reduce to the famillar harmoniec functions: namely,

QU[AU(I)OOS vd + Au(a)sin Uﬁ]. q-v[éu(l)cos vé 4+ Bv(a)sin vé} (44)
2 _
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- and

eid, s log q (45)

This property which is the consequence of (30) and (36) is
essential in the method presented in this report for connect-
ing a compressible flow with the incompressible flow of simi-
lar configuration. '

In the subsequent calculations, another integral will be
encountered for the function x(q,ﬂ) which corresponds %o
the imgginary part of w log w el™ or gq log q sin 9
. -qf{m = 8) cos 9 of the incompressible-flow. - Suppose the so-
lution possesses the form:

X(q.§) =.X1(q) gin 9 - X (aq)(m - 3) cos é_ L*(;ﬁ)

By substituting the expressior in euﬁation (23), X, and %

u .. are found to satisfy simultaneously the following differen-
tial equations: -
o 3 a2 o
- a%%;"(q) + (1 - L) (qxl' - Xy) = 2 (1 - 9=—>x :(47)
c® ' e
1 2 '
QX"+ (1 - %) (aXe' - X3) =0 (¢8)

‘Bquation (48) can be easily integrated by putting Xz = qk5(q).
The condition that Xp—>q as e, —> ® reguires kz(q) to
be a constant. The second integral of equation (48) is Just
‘the second of (43) which, in the 1limit, tends to 1log a. Thus
Xz = q &is the appropriate solution. With this solution, 1t

v is possible to proceed to solve equation (47) by ecsaming
X; = qgky{a). The equation for kil(g) 1is again integratle by

quadrature, and the result 1sg

T

k1(g) = 2 [(23 +1) log'T - 4 Ky f(l - nP -d—'r] + Kz (49)
2(g + 1) T <2

V.,

shere K; and. Kz '.are the coﬁstéﬁfs'of integration, Hence,
the desired particular integral 1is ’ :
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X(q,?) = qk;(T) sin 8 - q(m - 3) cos & (50)

The correspondence between soluticns for compressible flow
and for incompressible flow is summarized in tabdle 1,

‘4. The Properties of the Hypergeometric Functions
of Large Order

The behavior of F(a,,b,; ¢, T7) for large positive
values of p has been discussed by Chaplygin in connection
with the question of convergence of his series solution for
the flow of a gas jet. Howevér, his discussions: are limited
to the subsonic flow and, for this reason, the value of T

is réstricted to the interval O { T < _El;_I, In the more
T 28 + e

general problem where both subsonic and supersonic flow may
exist, the whole interval 0 < T < 1 has to be considered.
FTurthermore, both integrals of the hypergeometric equation
are involved, as will be shown in part II. 4&s a preparation
for the proof of the convergence of the solutions, the prop-
erties of the hypergeometric functions of large order in the
extended interval will be discussed presently.

Chaplygin (reference 6) introduced a new function

v
g% £,(T) defined as the logarithmic derivative of TE'Ev(T):

ngmely,

v
v (1) = zq-£% log 12 I (1), v # 0 (51)

where X.(T) denotes the first integral of the Hypergeomet-
rie equagion (27) or (28) and v can be either an integer or
not en integer. Then in the place of equation (27) or (28),
the corresponding differential equation for Ev is a Riccati
equatlon:

= t x B v é_lv(2a+l)=
X(tp) = byt % Bty v 2 [gv {26 2 ] o (52)

where the lower sign corresponds to equation (38). As shown
by Chaplygin, P (T) although an oscillatory funection, - -
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‘can have no root in O < T< Egl;—i and, consequently, EU(T)
+

is finite and continuous in the same interval, Morsover, it

can be deduced also that ¢£,(0) = 1 and Ev'(O) = -B. Since

1(T) does not change sign in 0 < 7 < —L1 __; (r) 1is
ty & . - T 2 +1 Ly

monotonic decreasing and eventually vanishes at T, < T*, T*
being the first root of the hypergeometric function for

v > 0. Since T* 1ig a decreasing function of v, when Vv
becomes large, T* and consequently T, will differ from

BB]I—I by a small quantity,

Chaplygin's theorem,~ In 0 < T < - 1 , 1f a monotonle

continuous function ﬂU(T) satisfies (1) M,(0) =1 and
(11) %x(My) 2 0, then

ny(T) Z (1), v >1 (53)

The proof is given in Chaplygin's naper (reference 6,) In
the case of the second integral »{T), the theoren is still
true with the signs of inequal*ties reversed becauss 1t can
be verified that X(f.,) = 0, where E_,(7) corresponds %to
the case of F,(T) instead of F,(T) 'in (5l§7 and E_,(0)=-1;

therefore £_,{(7T) 1is negative in 0<T<

— 28 + 1’
Corollsry §512.- In 0 < T<1._£;__ the functlons

—2B + 1’
ED(T) and &,(T) fall respectively between the limits:

(13 T, %(1) < B (T) <1 (%) (54)

-V

(11) T, U(T) > By(T) > T, (1), v > 1 (55)

wvhere

. - 1 -7 T

f
J
[}
/ _1 - (1 - T)a] 4T (57)

(T)=e

*\ r“‘w

To(T) = exp

2T
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‘This cap be verified easily by choosing T to be

f;/l" (28 + VT "o (1 - F . Ae, ovidently, in 0< T < %
ol ' ' - - 2B+1
when
o .

v > 1, M/ 1= izﬁ : 1) < t, < (1 - 'r)5 (58)
and ' ' .

N /1 - (28 + 1)7 ' A

-@&O(i&/ — > €y, ; - (1 -7 (59)

and furthermors, X(7,) Z£ O arc satisfiled, consequently, 1%
follows the results,

Corollary {(52).- In 0< T < % 1 __, +the absolute valwe
- T 28 + 1

of the logarithmic derivative of F(av,bvg cp:.T) divided by
v, 1is bdupded both above and bslow - that 1s,

F(av,hv; Cys T)

where M,(T) and M (T) are independent of v. This really
18 a consequence of (58) and (59).

It shall Be noted that tie results esbablished in the
foregoing are apnlicable to E,(7) = Fla, + B, by + By cypi T,
provided v 1is large, because then the two seguations (27 and
(28) tend to be the same.

Obviously, Chaplygin;s theoren ceases to be true when
L . For in the interval 1 << 1, the solu-

286 + 1 28 + 1
tions of the hypergeometric equation are osclllatory and,

T >

hence, within any closed intervsel ia Egj;.z < T<1 the num-
+

ber of roots of ZE,(T) will be proportional to v. (See ref-

erence 17.) When 1 1s large, there will be a large number
of roots in the interval, As a conseguence, the functlon
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tEu,(T) will have there an ever increasing number of simple

poles, and a finite interval in which EU(T) remaing finite
for all v does not exist.

To carry the investigation over into

the method is modified. Let (T) and Fv(T) be two inde-~

pendent solutions of equation (37) or (28); and let the lin-
ear combination be denoted by

FA(T) = B,(T) + 1 P (1) (61)

The complex function is, of course, a solution of the same
differentlal equation., In terms of its modulus RD(T) and

argument ¢U(T), the function may alsoc be expressed as

' Fr(T) = Ry(T) ot Hl (62)

where both R,(T) and ®,{7T) are continuous functions with
continuous derivatives. By comparing with (61), it is neces-
sary to havs

EU(T) RU(T) cos ¢ (1) (63)

Fu(T) = RBup(T) ein dp(T) (64)

According to the Sturm separation theorem, Ev(T) and FU(T)
never vanish simultaneously in any closed interval and RU(T)

never vanighes in 251 T < T<1 and remains positive in
+

the whole interval. Then corresponding to (51), a complex
function EU*(T) can be defined as follows:

v
vy (T) 2'r§% log T2 F,%(1) (65)

wvhich gatisfies the same equation (52). On separauing into
reel and imaginary parts, the Riccat! equation for ﬁ *(T)
becomes '
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' B .
x1<gv(1),gu(3)> = gv(l) + gv(l) + 52; [gs(l) - gf;’(a)

» (28 + D)7 - 1} =0 (66)
1 -7

£5(8,(3), 8, (1)) = £3fR) 4 _{.:b___; £,(3) w2 g (3)e (3) = 0 (67)

where gv(l) and ﬁu(z) are real continuous functions of T
defined as

E,:(‘r) = Ev(l)('r) + 16,020 (1) (68)

Their connection with RU(T) and ¢U(T) separately are giv-
en by means of (65): namely, :

v&u(l)('r) = 37% log 'r'g’ Rv('r) (89)
v iv(a)('r) = 21% d>v('r) (70)

Now equetion (67) can be integrated in terms of ﬁu(l)(T)
and whence ﬁv(a)(T) can be eliminated from equation (66).
Then the equations for . ﬁv(l and iv(z are

(1) = ¢
xl(ﬁv ' ) = gu(l) Ay ? - Eu(l) + é% [gﬁfl)

a 38 -3V 4 4 (2) iT ( 1) 1
- to (1 - 1T)Fe .fg veoteT oy L28 I L ] =0 (71)
R

T, (1) a7t
EU(Q)CT) = -E,O(l - T)a B-UTfo gu T ’ go = 2

(To& R-l,('l'o)>a

(72)
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Equation (71) together with the conmdition £,(2)(0) = -1 de-
termines uniquely the solution Ev(l)(T). The actual value
of ﬁv(l)(T) can be expressed, of course, in terme of the

known hypergeometric functions. Byt the problem on hand is
to determine the properties of E,'*/(T) for large VvV which

are given by the following theorsm.

Theorem (52).~ If nvﬂl)(T) 1s continuous and monobtoniec
in T < T <1 and satisfies Xl(nv(l)) :'O) then for all
v >N ' )

n, () 2 £y (2 () o (73)

The proof is given in apvosrdix A,

Corollary (£3).- In T, < T < 1, the following inequal-
ity holds for the modulus of Eﬁ(T):

. ' . U/B
Ry () /By (1) < (52) , v > ¥ (74)
where '

(28 + 1)Tg = 1>0

Tor in T, < T <1, éu(l>.< 0; and hence ﬂv(l)(T) = 0
satiefies the condition O > ﬁv(l)(T), which gives (74) by
integration.

Now, since Eu(l)(T) ‘18 bounded by zero for all © # O
in To < T<1l, it is implied also that

R,(T) < T,V(T) (75)

%
wvhere T.(7) = ;f@a. Hers the constant %, can be determined

by Jjoining T, =a% 7T = To with T; or Tz defined by

egielions (56) and (B7). Thea from equations (63) and (64)
it follows that for v > N .

|2,00] < V(7 (76)

lgv(T)l <21, T,<T<1 | (77)
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PART II

CONSTRUGT ICN OF THE SOLUTIONS FOR
COMPRESSIBLE FLOW AROUND A BODY

6. Chaplygin'se Procedure

In the previous sections, the particular solutions of
the differential equations in the hodograph plans are ob-
tained, Since the differential equations in the hodograph
plane are linsar, superposition of solutions is sllowed.

In other words, if these particular solutions are multiplied
by different constants and then asdded together, the sum is
again a solution of the differential equations. By this
procedure, general solutions can be constructed from the
particular solutions,.

However, there is a difficulty in such 2 method of
constructing the general solution — the dlfficulty of making
a proper cholice of the multiplying constants for the partic—
ular solutions so that the resultant solution will give a
flow satisfying the boundary conditions specified in the
phyeical plane., This can be seen from the fact that the
space coordinstes x and y are obtained from X whiech Iis
not explicitly connected with V¥, the stream function, In
fact, to obtain the coordinate x and y directly from V¥
would involve an integration in the hodograph plane, Thus
the linearization of differentisl equations in the hodograph
plane 13 obtained at the expense of the simplicity in boundary
value problem. To guarantee that V¥ and X do actually be—
long to the same flow in the physical plane, an additional
condition besides the differential equations for ¥ and X
has to be satisfied., This condition will be discussed in sec—
tlon 11.

Chaplygin {reference 6) suggested an ingenlilous method
of solving this difficulty by using the well—known solutions
of the incompressible flow, The first step in this method is
to find the incompressible flow around a body "similar! to
the body concerned., (The meaning of the word "similar" will
be made clear in the following paraaraph )

The stream function wo, for instance, is then expressed
in terms of the speed q and the imclination 6., The function
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Vo (q,8) can be expanded into an infinite series each term

of which ig of the form q® cos nd or qn sin nd, TFor the
flow around a body with constant velocity U at infinity,
the function V,(q,4) has e singularity at the point q = U,
@ = 0 in the hodograph plane, since there =2ll the stream—
lines, or lines of constant VY, originate, Thus, there.are
two forms 'of the series expansion of W¥,: One is convergent
within the circle g = U; while the other is convergent out—
side of the circle q = U, The first, or "inside," series
must be regular at the origin of the hodograph plane, There-
. fore, only positive values of the integers n can occur,

The second, or "outside," serles can have both positive and
negatlive Vv, Chaplygints method is to use the inside seriesg
for VY, as the starting point for eobtaining the desired
"solution WV for the compressible fluid, He suggested
choosing the multiplying coefficient of the particular sol-
utions for the compressible flow by the condition that for
the 1limiting case of infinite sonic speed, or incompressible
fluid, the series will degenerate to the inside series of

the incompressible flow elready obtained, The series for
the compressible stream function V¥ so constructed can be
called as the inside series of VY, The outside series for

VY then can be obtained by the method of analytical continu—
atlon with the aid of the "outside serieg" of the incompress—
ibvie flow,

These -solutiors so constructed for the compressible flow
contain’ the Mach number of the undisturbed flow as a parameter,
They constitute a family of singly infinite solutions, In-
cluded in this famlly of solutions is the limiting case of
zero Mach number of the free stream, Thig limiting case will
glive the incompressible flow around a body used as the starting
point of thils method, For other values of the free-stream Mach
number, the body contour is generally different from that corre-
sponding to zeroc Mach number, Thus, if the compressible flow
around a glven ‘body is desired, the body shape for the initial
incompressible flow must be slightly different from the given
body shape, EHowever, if a geometric parameter is included inm
the solution, such an adjustment is not difficult to make,

It may be stated here that owing to the regularity of the
solution at the origin of the hodograph plane, only the first
solution of the hypergeometric differential equation appears
in the inside series, For the outside series, both the first
and the second solution of the hypergeometric differential
equation are necessary., This is in direct analogy with the
appearance of both posltive and negative exponents of q in
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the incompressible outslde serles, This fact is particularly
important, since previous investigetors seem to be vnaware of
it, . Chaplygin himse¢lf did not use tte sesond solution of the
hypergeometric differantial equaticn. but that is simply be—

cause, for his probium, tnere is no singu‘arivy in the hodo—

graph plane and hence only the inside serles ig needed,

6, The Functions for Incompressible Flow

Following the procedure outlined in the previous section,
the analysis starts with the functions requirel in defining an

irrotational incompressibls flow, For tlhig case, the sonic
speed o, tends to infinity, and the equations for the veloc—~
ity potential o (x,y) and the. stream frnction (x y) all
became harmonic:
b, = 0 (78)
av, = 0 (79)

where A stands for the Laplacian operator, If Wo(z) is
the complex potential, it can be shown that '

Wolz) = @, + i wb ' (80)

where
z = x + 1y

If w. denotes the complex velocity vu-i v, 1t is connected
with Wo (z) by

W =H'9'E w(z) ’ (81)
dz
If wi(z)E0, it always 1s possible to solve for 2z in terms

of w3 napely,

z = 2z (w) (82)
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In general, this solution is not single—valued and will bde
discussed later, 3y intrcducing this relation into equation
(80), the compiex potential function in the hodograph plane
can be obtained

W (w) =¢ (u,v) + 1 ¥ (u,v) (83)
(o} ° [}
In case eauation (82) is many-valued, ihis would correspond

to one braach of the function,

It is clear that in this case X (u,v) 4is also &
harmonic funection, Let co(u,v) be ghe conjugate function
defined by

ou ov
ov cu
Hence
A(w) = X, = 1 o (88)
where
ws=1u-1iwv

Thus Ao(w) is an analytic funetion of w, From equation

(13) the derivative of A, (w) with respect to w must be
z, That is,

ahg
EERRCAE

But zo(w) already has been found from equetion (82).
Therefore,

Ag(w) = Jf z,(w)dw + constant (87)
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The veal part of Ao(w) gives ¥ {u,v) as required, accord-
ing to (86).

7. Conformal Mapping of Incompressible Flow
on the Hodograph Plane

Before the construction of solutions for the compressi-—
ble flow, the general charscter of the solutions in the
hodograph plene should be examined, Thia can be done easily
by investigating the hehavior of the transition function
z (w) for an incompressible fluid. To start with the
sgmplest case first, consider a steady irrotationsl flow in
an infinite, simply connected domain D ©bounded by a curve
C 1in the z—plane, with & parallel flow at infinity (fig., 1),
At every point =z of I there is one, and only one, velocity
vector q,» If the curve G is mapped into ¢ and infinity
corresponds to a point P on the axis of reals of w within
C, then the domain D is mapped inte D by = wapping func~
tion

we= wiz)

defined in (81), where w{z) is an anslytic function of =z,
The inverse function

g = g (w)

willl set up a continuous one—to-one correspondence between
w— and g—plane, provided the mapping is conformal., This
requires that w(z) 4is analytic, simple within D, and

vi(z) &= 0,

However, for most problems these conditions cannot be
satisfied throughout the field of flow. In the first place,
the function w(e) is generally nonsimple, for example, in
the case of 2 uniform flow, w(z) = constant, thus w!(z) = 0
and the whole z—plane corresponds only to & point in the
w—plane. Furthermore, the complex velocity for a two—
dimensional boundary—value problem generally can be put in
the following form:

w o= owy, + w¥(z)
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where Wwo I8 a constant. The boundary condition requires
that w*(z) = O and, as a conseqguence, w'*(z) = 0 as z
becomes infinite. Therefore, in all cases, the point P

in the w—plane, is & singular point. It is a dranch point
at wg, 1if 3z (w) 4is many—valued; or a pole, i{f otherwise,

In practice, ghere are two kinds of singularities {that play
a dominent yole in the problem of two—dimensional flow.
These singularities will be investigated presently.

Bronch point of order 1.~ It may be recalled that,
wvhen a closed body is present in a uniform flow, there
always exist two stagnation points both of which correspond
to the origin of the w—plane, If a streamline PS5 is fol-—
lowed, for instance,(see fig. 2) from +® to S, the por—
tion SMS' and then to =¥, a curve PS5 in w—-plane would
be described twice. This indicates that the function =z,(w)
possesses two branches of Riemann surfaces Joining together
about the branch point P, In order to make the domain D

single—valued, a cut is put along the axis of reals from

the branch point %o .+, Then one portion of the z—plane

ig mapped into a definite branch of the Riemann surfaces

in the w—plane, and this will be defined as the domain D,
If the body is symmetrical with respect to the coordinate
axes with parallel flow at infinity, then the domain

DiRlz < 0 will be mapped conformally into B on one branch
of the Riemann surfaces and D!:Rlz > 0 on the other, where
the region within ¢ 1is excluded.

Logarithmic singularity.~ The flow over & wavy surface,
for instante, placed parallel to a uniform stream has a
periocdic nature. TFTor such flows there are infinitely many
points in the physical plane that have the same veloclty.
Hence, there are an infinite number of branches in the w-—
plane, each of which corresponds to a definite portien of
the z—plane. The function zo(w) must have a term log

<. —;%) and the point E now is a logarithmic singularity.

If, however, a cut is introduced from the branch point to

+® and - 7 < arg < - %) < 1w, then the domain D is again

made single—valued,

1The function zo(w) is eaid to have g branch point of
order k at W = weo Af its inverse w(z) contains the
part w® which has & zero of order k + 1 at z = o,
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B, Construction of a Solution about the Origin

Stream function.~ From the considerations of the last
-section, the domain within a circle with radius iwt = PS = U,
where U is the absolute value of w at infinity in z—plane,
is in all cases single—valued, If a funetion Wy(w) is as—
sociated with a definite flow in z—plane, from sectlion 6 1%
is an analytic function of w and regular within the circle
lwt = U, Consequently, the following Taylor expansion exists:

- _
n .
Wolw) = Z Ay w, [wi<vU (88)
n=ao
wvhere A}s are, in general, complex., Since w = qe’ié

and by (80) the imaginary part of W, (w) is equal to in—
compressible gtream funetion WV,, it can be written as

V(q,9)=In {Wc(w)} = Z qn {Ail)ces np +A1(13) gin na}( 89)

n=o

According to Chaplygin's procedure, the coriesponding
compressible solution can be obtained by simply replacing
the fq%ction q® in equation (89) by the corresponding

r
n
e X (1) as shown dy {(40), The second integral is ex—

cluded by the regularity requirement at ¢ = 0, However,
in order to preserve the proper singularity at the point
(U,0) in the hodograph plane, the compressidble sireanm
function ¥ is written as

= (=)
tl/(q.ﬁ).-_-‘ Z q? Eir.)(-r) {Ail)cos nd+ An sin ne} (90)
nso

where

2Py « D Femtaienit) oy (g
: E (7)) F(a b 30,373)
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2
U
and T, = L —= the value of T, corresponding to the
28 ¢ ; ] .
: )
free—stream velocity U. It is seen that if e - ®, then

o]

(r)

T =T, >0, and En (T) 1 .due to the normalizing con—

dition (30). Thus the solution is reduced to the incompress—
ible form. Fu-thermore, if '@ > U +ile charector of.the sol—
ution is exactly like that of the incompressible sotution,
Hence, all the speciied condiilons are sebisfied, OFf course,
for the mixed subsonic and supsrsonic flow, the free—stroan
Mach number is always less than unity. Thus T, < 1/28+1.

For later analysis as given in part TII it is convenient

to write V in'a different form. Since r 1Y 15 a purely

real quantity, a:complex func@ion H(w;T) can be constructed
as . e o o ;

.

-
\
.0
»

WwiT) = ) A _fj’m W, lwl<T (92)
r=0 :

:

Then, similar to the rel@tion between eguetions (88) and
(89), WV(a,8) ocen be teken as the imaginary part of the
new Function N(w T) Thgs,

-‘.-!'.;
W(g,d) = Im-{W(w;Ti} . (93)

Mroneformed potential funchtion.-- Similariy, it is
possiple to construct aunother funq:iop Mw:T) defined by

(o]
AwsT) =, ;ﬂ'In';( )(T) Wt v a<U (94)
7 ] . ' n=0 " : .

In this expression, the coefficients _; are obtained from
the expansion of Ao(w) for the incompreesible flow (57):

Aw) = 2; E ',  |wy<U (95)

n=0



38 NACA TN No, 995

and

.Eir)(T) - Lyl
Fa(Ty)

(98)

Bquation (96) is the result of equation (91) and the equation
of compatibility given by equation (24), Then the function
x({q,8) for the compressible flow is given by

ﬂq¢)=Rl{Mwn%- (97)

The functions W(w;T) and A(w;T) are actually regular
et the origin and satiefy the imposed conditions. However,
the following question may be raised: Do the series (92)
and (94) converge and represént the functions WV(g,8) and
X{q,8) 1in the domain of validity? To settle this question,
it is necessary to prove the folleowing theorem:

Egeorem(ggh If the constants An, and En are ziven in

equations (88) and (95), while Eir)(T) and fir)(v) are

defined respectively by equatiocns (91) end (96), the series

(92) and (94) are uniformly and absolutely convergent in the
same domain as those of (88) and (96)., The proof is given 1in
appendix B,

9, Analytic Continuation of the Solution

Branch Point of Order 1

Stream functiog,— Ag proved in the appeﬂdix B, the series

(92) is absolutely and uniformly convergent and does represent
a regular function W(w;T) for every T 4n 0 =T 2T, and

on the circle of convergence it agrees with wo(Ui-ie), of

which the Fourier expansion existses

oo

Wo(Ue™i%) = zz, A, UT eTiRE (98)
n=o
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In the present section, it is proposed to continue
the solution (92) analytically outside:the domain }(w i< U
with the initial value given by equation (98), The domain
. outside |w|'S U 1ls generally many—~valued. To fix ldeas,
discuss first the case of =z branch point of order 1, Gen—
erally, the function Wo(w) has other singularities besides
the one at w =1, However, such singularities lie outside
the region of interest and thus need not be investigated.
Let the nearest singularity be given by |w|,= ¥ >U, Then,
the domain to be considered outside |w) = U is an annulus
with a cut Joining the two singularities, The proper repre—
sentation of- Wo(w) in such & region which has a branch
point of order 1 at w =T, is

Wo(w)i= T Wo*(w) (99)

i

where WO*(W) is single—vglﬁed and regular within the open
annulus U <| w| < V. Hence, in any closed domain

U+ 8 <|lwj<sV—25,.8

being a small number, there exiéts a uniformly and absolutely
convergent seriles:

[=~]

W *(w) = Z-[Bn w +_c!'1 w_n] (100)

n=o

which, on substituting in (99), will give the continuation
of the Taylor series (88).

i1For instance, in the problem of the flow around an
elliptic cylinder treated in part V, there are two singulari-
tles of the W, function given by equation (280): namely,
w=1 and w = 1/ea The first singularity corresponds to
the flow at infinity end is the singularity under discussion, '
The second singularity corresponds to a point inside the circle
of thse ﬁ—plane. the plane of the circular section. Since only
the fiow outside the circle of the §—plane is of interest
.here, the singularity w= l/ca' need not be investigated. In
other words, it is necessary only to expand the Wy, function

ir the annular region 1 < ‘% \< %%.-
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The solution for a compressible fluid, which has the
same character of singularities as W (w) and is valld

in the annulus U < |w| < ¥, can be obtained from (100)
.by introducing the proper hypergeometric functions corre—
,8ponding to each expcnent of w., That is:

(=]
(c) . = >7 » i * -~V 1
W (wyT) = 4 RS Z(Twv+ o * 6 (7w (101)
n=o .
. : (1), 1
which is the continuation of W (w3T), Here vV=nt+3,
n being 2 positive integer; ED(T) and q 27 gv(T) are

the firet and second integrals of the hypergeometric squa—
tion; and Bn* and Gn* are constants. It should be

noticed that the coefficients B, * and On* in the outside
series for the compressible flow are not equal to B, and
Cp, in equation (100} for the outside series of the incom—
pressible flow., The outside series of the inco?psessible
flow is used only to give the proper form of (wyT)

for the desired branch poan characteristica} while the
exact determination of W {w3T) has to be made by the
conditions of continuity, which will be discussed presently.

Since the partisl differential equation considered here
is of the second order, to ensure that W °/{w;T) 1s the

analytic continvation of W 3 (w;T). two conditions have
to be imposed at the boundary of the respective reglons of
convergence) that is, the cirecle o = U, These two condi-—
tions are the following:

wl i) (ve™ 19, T,) = wlo) (ve™, Ty ) (102)

[—-— wl 1) (g T)] = [__a__ w(°)<w;'rj (108)
dq K

T q =
T=T, T=T,

On account of equations (102) and (103), there are two
relations which have the imaginary parts:
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o
v
E: [B; E)7,) T
n=o0
(o]
* —v | B
+ c¥ e, (T,) U cosVYy =~ Al U sin n3d
' n=~0 ’

0 <38 <o2n
[o=]
Y e v r(m e enz,t D)
+ OX U*U(_UEU(TI)+ 2T, _c_i-_v‘,('rl))] cos u P

(o] . .

n ' .Fa.n'(Tl) .
= e A U n+ 27 N SR sin n ¢
n 1
Z Pl

n=0

Here the prime denotes differentiation with respect to T.
Evidently, the coefficients on .the left—hand side can be -
solved for in terms of the known constants A4,. They are!

Ay U <-l-+ -L> (104)
m+vV mp—-V

» v " -V _ 1
BrE(T,) U +c (T )T = -

~1s

m=0

v ~V
* ' * - 1
BX U (v_F_v(Tl)+;Tlgv(Tl))+ Ct U 7 (~ve (r, )+ 27 & (T ))

--3 2 Am U bg(7y) (v == (105)

From these two equations, the constants BY and OCf can
be gniquely determined, provided the determinant A(Ev,Fv)

does not vanish, These results are:
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v e(ri) T ) -
BXU = — avn(1~T1)p ;g;AmUm<E};+;E—:(éEm(TI) vg_v(71)> (106)
*y—? Ep(Ta) R YA RY: N
50 T ST, 0P m=.,o"'mU (;:;*;:;)(ﬁim(Tl>—”§v(71)> (107)

. - g
ag the Wronskian A(F,,F,) = — % q_av (1=~1) = 0 and
t,(T) is defined in (51).

The solution is again formal, To prove that the
function W(w;T) 1is a regular function in the annulus
region, the truth of the following theorem must be first

demonstrated, (See appendix C.)

Theorem(98. If the constants BA and O} are determined
according to (102) and (103) and if the series (100) con—
verges uniformly and absolutely in a closed domain

U+ 8§ <i1wl<V — 8, then the series (101) will converge
uniformly and absolutely in the domain U + 8§ £ w2V —- 8,
8 > 0.

Transformed potential function.—~ 3By a similar procedure,
_ the coptinuation of (94) is

(o N ~* A% o v

A ) (wyT) = 4 Sr [ n E (T)w + C} gv(T) w (108)
. . ' ﬁ-—;o,

where F (T) and Ev(T) are the first and sgcond integrals
of equation (28) and the constants Bf and Cf can be
similarly determined,_pamély,

Bx yV

n .

_ Gl 11) >
Ty ) 5B Q"g RN AN

(108)
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Fo(11) = L " —l_.._l;> E (1 Y= ( i)ﬁ (r)(' i
znv(l—rl)’ﬁ ;;3 . <m+v v (% ol To e (e ¥ ey

(110)

The solution determined so far 'is understood to be the
principal branch of the function Ww;T)s, It was assumed
that the flow at infinity is parallel t¢ the x—axis., If, in
addition, the body is symmetrical with respect to the co—
ordinate axes, the expression for the second branch of

W ° (w3T) will be ideﬂtical. However, in a more gensral
case where asymmetry exists, the two branches will reguire
separate consideration.

10. Continuation — Logarithmic Singularisy

Siream functiopn.— Consider now the second importantg
type of singularity: i1t is assumed here that the only
singularity possessed by the function Wo(w) in the finite
part of the w—plane 1% a2 logarithmic branch point at w = U
about which infinitely many Riemann surfaces are Joined.
By analogy with (99), Wo(w) now can be conveniently written
as :

Wolw) = WE(w) + Wolw) (111)

where Wg(w) i3 & regular function in the entire domain with
possibly an essential singularity at infinity, and hence
genersglly 1s given by a gaylor series or a polynomial in w,

and W (w) = ao(q.é) + 1W°(q,ﬁ) is an analytic function
which characterizes the singularity of Wo(w), Thus, aside

from a constant factor,

ﬁo(w) = % log <} - %) (112)
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If 5 cut 1s laid from +U to + and the argument of

W . 4 W
-—— is restricted in - < ar 1 — - then
( U> d i €\ U><"'
the function ﬁo(w) will be single--valued in the whole
cut plans.

The question of constructing a solution for the com-
pressible fluid consists, thercfore, of itwo purts: N*( )

and W (w) However, the construction for W*(w) _s, in
principle, exactly the same as that of (92) ani hence only
¥ (w) will be considered, First, let W (w) be develoﬂ§d

into power serieas in the respective doma;ns of validity.
The imaginary parts are:

. (1) = n
v (q,8) = z: % <i> cos n9d, g < U (113)

o U
n=1
o .
~ {0} /oD
0 (q,8) = — log + + i/a cos nd, q>U (114)
o] U n;& n\U

The corresponding expression for ﬁl(q.é). accordingly, will
be:

@

~ ' n
w(’)(q.é) = z; Ay Fa(T) (%) cos n4d, q< U (115)

- X - _
-\I—‘(O)(q.‘ﬁ)=-— B[ (1—‘1’)3%1+ y Qngn(T)<%> ® coe ns, ¢> U
T,

et

n=1 (116)

where FE (7) stands for Fle,,b;; en3T) and En(T) is
defined by (39).

The function .Wo(w) may be regarded as the complex
potential of a complex source situated at w = U. It is
known thet in this case the normal derivative of Wo(qoﬂ)
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on jwj =U 4is a constant, except at w = U, where it
becomes infinite., This boundary value can be expanded
uniquely:

wl

[« <]
- }: cos-né = l. 8 =0 (117)

n=1

The corresponding problem in the case of compressible flow
gan be put in an analogous manner: %6 find a function

V(q,3) which is continuous togetlier with continuous partisl
derivatives and the normal derivative of which on |wi=T

is constant., Thus, the corditions (102) and (103) in con—
juction with equation (117) demand:

Fp (m) a —g (7)) ¢ =0 (118)

[n 70T )+ 2T, En'(Tl)] A

+ [n glr)—2m, Qn'-(Tl)] 0, = 43(1—-71)B (119)

where the constant B can be determined when the normal
derivative wq(q,e) on |wl =U 1is assigned. By solving

equations (118) and (119) and using the relation of the
Wronskian of the two independent integrals of equation
(27), there is obtained

2

by = - B & (7)) (120)
c. =28F (T, (121)
n n -1 1

Thus the funetion V(q,8) 41s completely determined,

Transformed potentiasl function.— The associated function
¥(a,8) cen be similarly constructed. 4s A (w) 1s derived
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from (87) by integration'of-the inverse mapping function,
it must involve a term ( - %) log ( - -g-) which represents

the singularity of the function A (w), As in equation (111),
A(w) is split again into two parts:

ACw) = A3(w) + K (w) (122)

where A;(w) is an entire funection and Ko(w) ise

Ko(w) = %r(l - %) log (1 ~'§> (123)

Now the solution corresponding to log (1 - % can be

determined in exactly the same manner except that the
hypergeometric functions involved are Eﬂ(T) and gn(T)
instead of En(T) and gn(T). The part that will require

speclal coneideration is the term % log (l - %). Let 1%

be denoted by ko(w) = X, = 101

'i'o(w) = - log (1 - I!D (124)

This function i1s also multiple~valued., Let the argument of

e {1
cli=

.

(l - %) again be restricted in ~ 1 <« arg (1 - %) < 1my then

in the cut plane the result will bde

o n+1
xii) =-} Z -i-(-‘é) . Wi <U (125)

n=1

~(o0) 1 w w inm 2 1 /W —n+1} h
A, =3 -3 loga- e + Z E(ﬁ) s qwli> T (126)
n= _ )

l
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According to equation (86), the function io(q.é) is
defined as the real part of Ao(w). That part represented
by equations (125) and (126) 1s then

(1) N (Y
i _ R
o (a.) = - >_J -y \U) sin nd (127)
Ne=2
';('(O)(‘_:1 3) = a logﬂ_ sinv .3...2. {m—a3) cos &
o el U U U

[+ +)
-n
+ }Z L (%) gin nd (128)
n+l \U .
n=1

The particular solution corresponding to.

L 10g 2 gin 3 — L (n—-8) cos
U U U

already has been given in equation (50).

Hence the solution
for the compressible flow is

;((i)(q,as') = = Z 'Kn _i_'n('r) <%>n gin n & (129)

=2

§(°>(q.6) = % k(T) sin & — % (r—48) cos 9

vHere

o .
N & &y ’q>_n in n b (130)
+ - sln n
n_:l n —=n QU

1

.
S T (i_2 —ry P ar
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The conditions (102) and (103) together with an expansion

oo
o |
}‘2—' sin S+ ; (/—-:-l——+—-]=-i gsin n §= (n—9d) cos 4§, 0<d<2q

regquire that:

F (T + T R 32
~n( 1) An En( 1) cn n+l n—1 (132)

~

[n En(Tl) + 07, EA(TI)] Ay
+ |~-n 5(1’)4-2'1' .(:‘;'(T)‘E =—i—+—l—'n-,-‘-l (183)
-n 1 3 n 1 n —1

and

§1(71)'51 =2 (134)

iV}

['- Ga{Ty) + 271_§i(71)] Gy + 2Ty k'(7Ty) =-§, n=1 (135)

By solving (1232) and (133) for E; and 0 , there is
n
obtained:

. |
R sy Ul (b (1) gm0 (136)

s.
5= Gmal ) B s k3 e

by using the Wronékian Qf thqnindépghdeht 1ntegréls of equa—
tion (28), With © given by (184), the constant K, can
be solved for from 6135); it is .
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~l
2 81(7y)

— ] (138)
G1(Ty)

Ky = - (1—71)B [1 + BTy + (B+L)T,

The solutions V(q,s) and ¥X(a,d) 4in the whole domain
under consideration are uniquely determined. Since the
dominant properties of the hypergeometric functions dlscussed
in secticn 4 hold, in general, the egquation of convergence
can be similarly settled.

1l, Traensition to Physical Planse

-In the prewious.sectionsa, it has been proved that, for _
a given incompressible flow for which two associated functions
Vo(a,8) and X{g,83) are defined, there exist two associated
functions W(g,d) and X(q,®) for the corresponding com—
pressible flow, depending upon two parameters Y and T,,
The guestion is whether the associated functions ¥(qg,d) and
X(q,3) Dbelong to the same flow pattern in the physical plene.
To answer this question it 1s neceessary to fall back once more
on the equation of compatibility (24); since when VY{aq,s) is
given, ¢(q,d) 4is known by solving equations (20) and (21).
Hence, if %(q,8), satisfying equation (23) and approaching
Xo as Co —>= is to be associated with ¥ (gq,8) for the
same flow, then 1t is necessary that the equation of compati-
bility be satisfied, ZXZxcept in the case of logarithmic singu—
larity in section 10 where the complete ‘b(q,%) function was
not discussed, this c¢ondition has been properly considered,

Once the relatlonship between Y (q,¢) and ¥(g,d) 1is
established, the next object is to caledlmte tire flow pattern
Y(x,y) = constant in th's physical plane corresponding to
Y(qg,%) and X{q,8). In the first place, the fact that the
transformation defined by equations (9) and (10) is generally
one—to—one must be recalled. Suppose that in the hodograph
plane there is a line defined by

VY(g,%) = constant = K (139)

which will correspond to a definite streamline in the physical
Plane or a definite part of it, The streamline can be obtained
by eliminating one of the two variables in =x(q,9) and y(q,8).
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To do thils, first the equation (139) is solved for &
namely, .

8 = Hq.X) (140)

provided Wa(q,ﬁ) # 0. Introducing this relation into

equation (13) which, when transformed into polar coordinates,
are

\
x = cog & 3x _ sind 3% (141)

oq qg 0o¢

s
y = sin 8 3% , gosf X (142)

dq q &%

gives & parametric representation of thls particular stream—
line corresponding to VY¥(gqg,?) = K in the hodograph plane,
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4

PART III

IMPROVEMENT OF THE CONVERGENCE OF SOLUTION
BY THE ASYMPTOTIC PROPERTIES
OF HYPERGEOMETRIC FUNCTIONS

12. General Cencepts

The significance of the general solutions constructed
in part II of the present report when viewed from the prac-
tical point, rests in the fact that they constitute an ex-
istence theorem. It shows that an irrotational isentropic
flow about =& body can be obtained from the corresponding
problem of an incompressible fluid, if the free~stream Mach
number 1s not too high. However, the sclution in the form
of a slowly convergent infinite series cannot be conveniently
used to obtain numerical values, as the labor of computation
would be prohibitive. :

By examining the infinite series obtained in part II,
the egssential difference between the compressible flow solu-
tion and the incompressible flow solution is seen to bs as-
sociated with the fact that, while in incompressible flow
solution the individual terms of the series are of the forms

cos bvd cos V4§
a v
sin vd gin LY

in compressible flow solution the individual terms of the
.series are of the forms .

v cos V¥ - cos LY
sin vy sin v

If it were possible to0 write

0¥ 7,0 = [a@] . a® g, = [a(a)]

there would be no difference between the incompressible flow
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" golution and the compressible flow solution except the "dis-
tortion of the speed" q by the new scale Q. In fact,
this possibility is realized under the special condition of
Y = «1 as shown by von Kérmdn (reference 1) and Tsien (ref-
erence 9),

For the case of isentropic flow with the general expo-
nent Y there is no such scale factor Q, However, 1f v
e assumed to be very large, then there is such a function
Qs at least to a firet approximation. In other words, the
leading term in the esymptotic representations of F (T)
and G (7) does give the desireéd form. On the other hand,
the use of asymptotic representaﬁion.neceasarily implies an
approximation, But thig defect 1s not difficult to remedy
as the difference between an exact hypergeometric function
and 1ts asymptotic form can be added to. the approximate so-
lution as a correction term. Sinoce there are an infinite
number of terms in the series form of the solution and sach
gives a correction term, the ¢orrection terms also constitute
en infinite series, Therefore, the original infinite series
is now transformed into a closed function plus another in-
finlte series of correction terms. At first sight, such a
transformation seems unable t0 give a result that will avoid
the difficulty of prohibitive computational work, But actu-
ally, owing t0o the good approximation given by the asymptotic
representation even for moderate values of VvV, the correc-
tion series converges very rapidly. A few terms seem t0 be
all that are necessary. Thus, for all practical purposes,
the original infinite series is now converted into a closed
funotion with "speed distortion"” plus & few correction terms,
The fundamentally interesting point is that for the case of
a general exponent ¥, the simple method of speed distor-
tion will not give an accurate enough solution, (Cf, ref-
erence 8,)

The change in type of the differential eguation at the
sonic speed also introduces a singularity in the speed dis-
tortion funetion Q. However, by using the correction terms,
the effect of the singularity caen be limited %to a very nar-
row range in the neighborhood of sonic speed, and no practi-
cal 4ifficulty 1s experienced. This will be made clear by
the numerical example given in part V of this report,

13. Asymptotiec Selutions of the Hypergeometric Equationl

Let Uu(T) and Vyu(T) be two new dependent variables
defined by
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v .-‘ . ) Cee ' WU (T ). 'é.;.'r" ‘.2 (l -.T) Uv (1T.)"‘ A Lot .'(.1:'4'3\)
: Coy . : L
[ ' ' o .t - . ! N .:“'-1'
T ' -_g
' L x My = 2 e ) T Wyl  (144)

»

The.différeﬁfial équations (27) and (28) reduce respeciive--
ly to

Ubl-! (T) - Pva C'P(T) +pa(‘[)_] UU(T)-;. =: iQ (145)
v, (1) [v® () +p B(T)]'VU(T) = 0 - (148)
where = .
- o(t) = 1= {2g + 1)1

4T2(1.~ T)

BT(ET = 3) - (% - T2.:
4T®(1 - T)® . P

.
-

A : Pie(T),?

Both equations (145) and (146) involve a constant param-
eter UV which is real and positive but ctherwise arbitrary
for any fixed constant £. In the interval O < T<1' in _ |
which the flow takes place, the functions m(TQ and PiBCT)

are finite and continuous except at the extremities T = O
and T = 1, To6 avoid the repetition, let equations (145).

and (146) be replaced by

Ug,v(T) -'[Ug_¢(T) + éa(T)]TJa,u(T) =0 . -(147)

where Uﬁ,v(T) = UU(T) ‘when o = Bj and U—B,U(T7 =.VU(T)
when a = «B, In the intervel 8 < T < 251 T~ 5, 8§ > 0,

m(T) is bounded from zero and is positive. F. Horn
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(reference 18) showed that when P 1is a large positive nunm-
ber, a2 pair of solutions of the following forms exist 4in the

interval '¢concerned: .
1) - T - 1.- ' Toapg T
UC<I. ‘D( ) N".QBK--[CP_‘L + fll.’.)( ) +.f1‘a‘)§ ) ., + f:_;i__)_ (148)

é33<7) e [¢;%+ ?éifT}.f féﬁéj) .. faﬁgT)J'(i493'

I
-
I

where o T .
T

R % 1
{T) r.-fcp {r) at, o< T <.25_*:1 o (150)

I

A constant in equation (150) was left out, as it can be ab-
sorbed in the constant factor- in- equations (148) anda (149).

This representation can be shown t0 be uni que as 101g ag v
remalns gte ter than a large posltlve number- N, By substi-

r -
tuting Ua U(T) and Ud U(T) in equation (147) and choovsing
the coefficients £ s(T (r =1 and 2; and e=1, 2, 3, ...)

to make the individual terms vanish, equation (147) reduces
to A :_ Sl . :

1 ! 1t Y

-r_zgs f}‘efz PEOE s T Pafy g m T (151)
Voo .Ti"“ N U T ﬁ'_
2K f{a'-.s"‘-l:.-'- KP, fa.. s.+1 = "Pa fa ’ S.'T '-fa..v s’

Do v ] .

s=0,1,2,,,, (152)
where f1 °(T) = fa ofT) = @ .. The coefficients £, 5(7) ..
then are glven successivelv by & firet -order ordirnary dif-<. -

ferential equation snd their deterrination does not involve
any difficulty. The problem is thus formallv polvsd,’ .

»Mf

Obviously, the solutiqn is-of the exppnqntlal type when

m(T is positive in the range concerned and o7 an -caci’le-
tory'typé.whgpe @(T is negative, Now in the interval
B T<1 -8, 8> "0 where m(T) ¢ when ?Tn§.§E%fI. both

types of solution exist. It ig- evident that in the neighbor~

hood of T = —L._
28+ 1

a change of character of the solutions
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muet take place, but the manner in which. the transition oc-.
curs cannot be deduced from equations (148) and (149) be-
cause of the failurs of the representation of the solutions

in the néighborhood T = 951 I° This ie closely related to

the Stokes phenomenon.

The method was extended by Jeffreys (reference 19) to
include the case where m(T) haes a simple root in an inter-
val under consideration and can be applied suitably to the
first order of approximation. The genseral problem has been
treated by Langer (reference 20.). in. a series of- papers, .COon-
sidering both the case where 7V and T are real and that
where V and T are complex, Attentlon was gilven especially
to the Stokes phenomenon, and a law of connection of the so~
lution valid on each side of the critical point was expliecitly
stated, In the present case, however, only the first approx-
imation is used and Jeffreys' method is adopted for convenl-
ence.

It is seen from equations (148) and (149) that the
fi S approximation depends only on m(T) and the effect of
Po, is felt only by the higher order terms. Hence, for
the first approximation only, eguation (147) can be written
es _

U, (1) = v (1) UF(T) = 0 | (153)

where Up vy = U_B,U = Up. Thus, when vV > N, the dominant
terms of the asymptotic solutions are

Uél)(f) - ¥ GVE [1 + 0 (%):] (154)
o< T2

Uia)(T> ~ w_% e-DK[1'+ 0 <%>.] 3F+1 (155)

Here O (%), in each case, denotes the fact that the term

;s uniformly of the order v-l when v 1is sufficiently

large in an interval & S T < -8, 8 >0 and is a

28+ 1
function of v'l.



.

- NACA TN No, 995

On the other hand, in the interval 231 T + 5SS TS 1 -8,
'where 9(T) < 0 ana X 1is a pure imaginary quantity .iw
where W is real, the dominant terms of the asymptotic so-
lutions must be & linear combination of equations (148) and
(149) and must be of the forms:

" Uél)(T) ~ 21 cos (vw + ¢,) - (188)
2 v :
:"i - <a)('r) -2 gin fuu;+ €); —2— ; T < 1 | k157)
o o v 2B+ 1

' ‘where "¢, ¢z, and €, are constants to be determined.’

-The question of determination of these constants is ac~
tually the same as that of determining the mode of continua-
tion of the asymptotic representation of the solutions in the

range. 551 S +§ STS1 ~§. This can be done, according
"o ﬁeff;eys, by considering the solutions valid in the neigh-
borhood of T = 1 . Let E =T - 1 ., When £ 18 suf=-
2+ 1 , 2B+ 1

ficiently small and V 4s large, équation (1E3) can be written
approximately as

U, (£)+ v? 1 (0) ¢ u,(t) = 0 (1858)

‘) (o) -

provided ~1l. Thig is known as Stokes equation.

~ n! o' (o)
The independent integrals-are

% ey ) 3
2, (L), i ( (§) with (= 2 v¢'%(0)£§ (159)

K3 3 8

where H ( )(ﬁ) and Hl )(ﬁ) are the Hankel functions of

order %;a Conglder as two independent golutions the follow-

ing linear combinationsg:

U.E,l)(g) = g.% 1)

20+ BelPl(y (160)
)

l','llH -
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a2 % a
o) - ¢ 17 () -g%__ﬂé-)(g) e

As (1)(§) and’ H(a)(C) are analyfic functions in the

. whole { —plane, thif immediately provides a means of iden-
tifying the asymptotic forms that represent the same func-
tion,
- Suppose first that for arg £ = O, the solutions are
given in equations (160) and (161), The same golutions for

' which arg £ = and arg ¢ ~'g-n are

( )(ﬁ) - g% eﬂi (ﬁ eswi> E% _L ( ) <§ esgi> (162)

oltdee) o e%ﬂ_fl)(g e%’i‘)-ﬁ Fn, (3 T as

Now-

3 TP S

p.

and when ! is large and -t < arg ﬁ e?r < 1w, the dominant

terns of the asymptotic expansions of H( 2 <§ '> and

ni

28 (16e®) Tare.
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By substituting in equations (162) and (163) and neglecting
the term of lower order in ¢§, there is obtamined by expand-
ing at the same time equations (160) and (161):

= . & -t .
2t cos (§ -T)— ¢ e 164)
E;% sin (g.- %-__4>'§*% eg (165)

Here the arrow is used to indicate the transition of the as-
ymptotic representation of the same function from the left-

~
%

2

. -~
hand to the right-hand member., For small £, § * ~ o
and §{ ~ —-vw; . (156) and (157) finally become

Uil)(T) ~ ;; cos (vw —f%> {? + o.<%j} 1 (166)
— < T < 1
Uia)(T) ~ ;é; cos (vg + E)-{l Y (%Z}23+1 (167)

with ¢y = 2, ¢cp = ~1, and ¢, = «%w Under the hypothesis

euet made, the pair of expressions (164), (166) and (155),
167) actually represent respectively the dominant terms
of the two asymptotic expansions of the solutions UJU(T)
and Uéa’(T for a Vv which may be any positive but large
number, !

14, The Asymptotic Representation of F(av, byi ey T)

and F(av + B, by *+ B Cys T)

t
The dominant terms of the asymptotic expansion, of

1)
US (1) eand Uéa (T) are given respectively by (154),
(166) ana (158), (167), By evaluating the simple integrals
in (154) and (166), the explicit expressions for the first

(

epproximation of le)(T) and Uéa)(T) are
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—— .
: ‘

% Pl -
(i)('r) (23)—“‘“—‘v(a-1) ff;_&i:% : FE o () (168)
gt _"H°"
_p_(Ob—:L) o : ,"u+-1 o< T< 21 7
. Tl e :— a
(1) ’ % ) :.r‘. W ,
v, (1) ~ {45::;)1 -r% cos <vw - —) Ui (o)
N 'j y ? | : -y ". . *
1 : —-l—-<'r-<1
. T 3 Do\ - RPBF1

wvhere"

¥ .~

S N S S A \
[a(l - T)¥ (1 - aas'r,)ﬂ 5
T"‘(ﬁ)_= — e g = [Y+ 1] (172)

Ry
(1 - 1%+ (1.- g27)F V-1

Aoy,

) . ."' .

L, T3
i, L. (1 -~ 7) 1 « 7T

~

The values of ;the funetion - (T) are given, in figure 3 to-
gether with the’function M(T) ‘defined- by ecos p = 1/M,

In the respective ranges "of 'validity, each pair .of expres-
siong differs from the exa¢t solution:only dy a constant
factor which can be determined to satisfy. the normalization
conditione (20) and (36), By substituting ‘equation (168)
into equation (143), these were found to be

' 1.I"J 4 =1, +V
c_, = = (2p) * —E
=0 /3 (1+a)
Thus, the expressions fo¥ the desired aaymptoﬁic forms, when

v > N; are, for the interval oS 71< EEﬁff'
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g_v(v) ~ g(1) (1) (178)
gv(-r) ~ g(r) 270(r) (174)
where 8 (. R e .;
LB+l Py % %
ce(n)e BT 2y 2 [m(l- R L) ] (175)
(1= enE (1+ @) A=T)Ee (1-oPn)F
i For the interval 534‘1 < T< 1, they are
Eﬁ<f)." {1 TU(TyEéés”(vw - E—) | (1?6)
‘ _'C,‘r,u('r’) ~ -Jé—f('r) T_v("r) ':coe-; <vw + 71;,‘1) - (177)
. Where B, N
(1-7)® °* (28)° 2
£(1) = 2 v 2(7) = 2 . (178)
(a21-10% ) . Vreal? J/3ET

The vaiﬁgs‘of T(T) afe givén-(fig. 4) as a funetion of T
together with the local Mach number N,

Similarly, as from (153)_~U§(f)_~.vg(T0.' corrssponding
expressions for ”E(ab + ﬁu b+ Byl T) are:

CE (1)~ .g(-'r)_.TU(.'()" T (179)
S R P v RRRE
Efr) ~wglr) 27%r) < - 70 T (180)
where - . T R TR
.. . g('r) y (1= "F') 2.4 C (181)
(l-‘ozz'r)%
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and
iv(f) ~ g(1) T°(T) cos <vw - %) (182)
—_—t < T <
_C;U(T) -3 g(‘r) T “{T) cos (uw + Z) 183)
where
et

(1-1)‘-

e 1)i (184)

g(t) = 2

Here Ev(T) denotes invariably the first integral

F(au. byi Cpi T ) while QwﬁT), when multiplied by q—av.

denotes the second integral Fv(T)' defined by eguation

(37) when v 1s not an integer or by cguation (39) when v
is an integer, since the asymptotic expansions are valid for
both integral and nonintegral values of VvV, provided v > N,

In the domains of validity, the asymptotlc expansions
may be differentiated with respect t0 T with the same order
of approximation, Hence, for v > N, it can be shown that

for 0 < T < L

2B+ 1
vey [
Ev,l(T) ~ n(7) (1) o (%) } (185)
éb,l(T) ~ n{7) Y{7) {1 + 0 <%> } (1886)
vhere 2
S -3 3 37
(=2 (1~7) ° (1-a?7) * [(1-1) + (1= a®T1) ] (187)

iu,x(T) ~ n(7) 2°(7) cos (vw - u‘- %) {1 + 0 (%)} (188)
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éb,l(r) ~-% n(t) V(1) cos (Uw+-u4-§) {1+ 0 (%) } (189)

where
e ag

n(T) = 4(1-7)—I (a®T = 1)—% (257)-%, n(t)= cOS'lf;;TT (190)

The values of the funotions g{T) and h(T) are given in
figure 5. LR

It is interesting to note that when Y = «~1 the con-
stent o vanishes and only She exponential type of solutions
exist. In the case of WD<T the solution is exact, namely,

for P
B 2

P {7) (191)

(1)

(192)

jd

-V

of which the first is in agreement with the result obtained
by Tsien (reference 9), while for Xv(T) the solutions which

are not exact reduce to

- -V
F (1) ~ [1 +=3f—J ; .2 : {} + 0-(l> } (193)
. 1+ 1+
. v
-~ . q 2 , 1\. .
QU(T) [1 + 002] = {} + 0 <€> } (194)

®
Wi
¥
[
]




NACA TN No. 995 63

This may be the cause that destroys the analogy between the
coordinates of the corresponding compressible flows and the
incompressible flows. .

For Y = 1,406 and VvV = n + %, n being a positivse
integer, the thres groups of funections F (T), z v(T); EV(T)'

-~

. - { 7 Y -
ELu<T)' and Ev,l‘T)' E;v,1<1)' together with their asymp

totic expressions were cgleculated for T varying from O
to 0,5 and = from O to0 10, The results are presented
in tabies 2 to 13, The behavior of the approximation is il-
lustrated in figures .6 to 11l. I% can be observed that the
degree of approximation of the functions increases, on the
one hand, with v for any fixed T. On the other hand, for
any fixed n, the approximation becomes worse as T ap-

proaches the eritical point T = EE%TI' corresponding to

the local sonic speed. On the whole, if the critical point

T = EE%TI. is not reached, the agreement can generally be

regarded as excellsnt, especially for larger values of n,

15, Pransformation of the Function W(w;T)
.Branch Point of Order 1

The function W(w;T) for a flow that possesses a branch
point of order 1 was given in sections 8 and 9, The forms of
representation, as can be sesn, are not, in general, suitable
for practical calculation., The difficulty is twofold: Pirst,
the series involves infinitely many hypergeometric functions
wiich themselves are, in turn, defined as infinite series.
The convergence of hypergeometric series generally decresses
with an increasse of the parameter v. This means that 4% is
very difficult t0 compute the value of the later terms of the
series for W(w;T). Secondly, the convergence of the power
series defining the function W(w;T) itself is, as expected,
very slow in the neighborhood of the sirgularity. To in-
crease the convergence, the following method is used:

Observe that the corresponding function for the incom-
pressible flow that has the same character of singularity is
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(1) & '
W, (w) = Z A, wP, fw| < T

n=

©

which is absolutely and uniformly convergent ln any closed

MED
domain in |jw| < U, ¥ow, if in (92) En (1) 18 replaced

by . . -
F_(r)('f) s £(T) 7 (1), O0<7T<1 (195)
n £(T,) 28+ 1
where %(7) = ‘*j—%. as by hypothesis, 0 < T, << 1 4
T(T, 2B+ 1
then 1t ig clear that
)(w ) &8 £ T)y EZ A, (tw)™ [twl < U - (198)

which 1s also absolutely and uniformly convergent in the

same domain as VW, (w) and, consequently, (196) will be de-
£(7)
£(7,)
striction that (195) holds only when .n 1is greater than a
large number N is violated. The error can be removed by
adding to0 gnd subtracting from (91) the quantity given in
(196); then it follows immediately that

noted dy

Wo(tw). In doing thig, however, the re-

_ i (i) - Wy(w;T) + N(i)(w;'r) (197)
where (r)

Wy (wiT) = g%;ty Wé(tw) (198)

(i)(w T) = Ej A, Gn(T) wn’ lwl < U (199)

with B=0
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6 (1) =27 () - :(<T‘f>) $%(7)

Here n 1s a positive integer. The function W{(w;T) <then
is represented by the sum of two functions W,(w;T), which

(2
is of closed form, and ¥ )(w;T), which is the difference
of two econvergent power series and hence is alsoc convergent
But, according to the theory of asymptotic expansion, Gn(T
tends t0 Zero as n approaches infinity. In fact, Gn(T)

is of order =n~%*; therefors, the convergence of W(w;7T) is
increased by the order of an~3}. This actually is the gist
of the whole prohlemn.

Ag the form of the represeantction of the hypergeometric
function given in eguation (185) ig valid for all T in

0c<T< EE%TI W,(w;T] @given by equation (198) holds auto-

matically even ouiside the circle |Iw| = U, For this reason,
W,(w:T) should be identical in form with that derived from
equatiorn (101). That this is the case can be sesen from the

following consideration. PFor, in addition to equation (195),
if 1t is assumod that

g (1) = £(v) 2" (1) (200)
it fellows that
E.(7) = - & (7,) = —I~:—;—L (201)

1

then equatiows (106) and (107) yield, by equations (108) and
(109},

~ B, __p x =~ O v
B¥ = n__ o7 ) g* 2 _ v pY(71.) (202)
n f<'r1) I n f( 15 1

By using these sets of approximate coefficients and replucing
x (T) and g (1) by their respective asymptotic expression,

the §ollow1ng relation is obtained with the aid of equation
(100
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(o) 0
v (wiT) = WalwiT) + W (wiT) (203)

where

Wgo?(w:f) = i E:-{GélF(T) W’ o+ Giz)(T) w—”} (204)
. Ly L0 .

. »
In this case the coefficlents: B; and Gng as well as the
functions EU(T) and gv(T) used in deriving WI(W;T).[are

(1)

approximate. Hence, if both are corrected, G, (v) and
Gga)(T)_ should bp_bf the forms

%

o)) (1) = a3 2,00+ oy ) az ()

(205)
Géa)(T) = AC: gu(r) + E%%:T T”(Tl) AQD(T)
vhere
4 = 3y - By 1), ATy 2,(1) = £(7) 2°(r) |
5 (206)
acy = ©, - ;{%ﬁ? 2¥(7,) , AEb(T) = &v(v) - £(7) T’U(T%J

* ] .
Here the differences 4B, end AOC, depend upon the condi-
dition gt infinity for any sets of constants B, and Gn,
while those of &Ev(T) ‘and AQU(T) "are functions of T
only and, for this reason, can be tabulated once for all,
It also can be shown that the order of AB; 1is at least of
n-' and therefore the convergence of (204) is again increased
by =n-—1i,

(1)

Consequently, if Y(q,8) = ¥, (q,8) + VY, (q,8) where
the superscript (1) ‘denotes either (i) or (o), and if
the coefficients are real, the stream function for the sub-
sonic flow is according to (93) .given by
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. _ f(T) 1
‘Ul(q'e) = f.(Tl) \Uo(tq.e), OS Tsm (207)
(1 =
Wal) (g,98) = « §: AnGn(T) q® sin n®, ¢ < U (208)
n=0o0 .

and in U< g< ¥

(o) = 7 )
wao (q,6) = _E; Leﬁl)(T) q’ + Géa)(T) q"chos vé  (209)
n=o

with 8 restricted by O < & < 2n, This result is striking
in that for T =7, ¥(U,0) =¥, (7,8) as 6&,(1,) = 0;

that is, the function VY,(g,5) represents the correct sin-
gularity of the exact funection. Tar awsy from the singular-

(1
ity the term Vg ) (g,8) (1 =1 or o©0) graduaslly comes

into prominence, especially near T = 551 1; but the con-
vergence there l1g¢ already so rapid that a suall number of
terms iIs enough to secure a high accuracy in w(q,e).

) It is interesting to estimate the magnitude of the sec-
ond vpart of the stream- function. By noting the fact that
Gn(Tl = 0, GD(TJ) = 0, the expansions of the G,(T) and

Gp(T) are

Gu(T) = gyt (7y) {7 - 7,0+ ., .,

GplT) = 6,1 0Ty) {7 - 7)) « . . ., T,< T < —1

Then from corollary (52), it is shown that for d=& O

4

(1) Bap
v {q,6) ~ ‘°> (1 -7, )+, ..
® (ae =t 1

In other words, the second part of the solution is of the
order of magnitude of (T - T;). However, the magnitude of
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(T - Ty) depends essentially upon T, for a given incom-

pressible flow, If T, 1is not small, then when T = O,

jT ~ T, will be large, Thus for large free-stream Mach
numbers, the second part of the solution V¥; cannot be neg-
lected, This means that for high free-stream Mach numbers
the correct solution for compressible flow 1s considerably
more complicated than the usually assumed simple speed dis~-
tortion rule wouldi lead ons to believe, Thus, any theory
based upon such a simple rule cannot be accurate enough for
transonic flows,

On the other hand, if T, 18 small, or T, << Bbi'l'
then the value of |T = T,i for T = 0 4s small, Further-
more, 17 the maximum veloclty of the flow 1s well below the
sonic velocity, then the maximvum value of T s&also is smzll,
thus |T - T4! for the whole flow is small, Tren the sec~
ond part of the gelution Vo 1is negligidle, However, even
then the solution for the coupressible flow cannot be ex-
pressed as the solution of the incompressible solution by a
simple dlstortion of the velocity scale, as is generally as-
surmed in the so-called hodograph method, s this would De
the case only if the multiplying factor [2(T,) 1is
identically equal to 1, S8Since the multip1v1ng facfor is 8
function 'of the magnitude of veloecity, the sitreamlines of
the ¢ompressible flow and the etreamlines of the incompresa-
ible flow cannot be made to correspond to sach other, On
the other hand, equation (207) shows that if V5 1is zero,
then V; 4is also zero, Thus there ie this one streamline,
the zero streamline, in both flows satisfying the require-
ment of direct mapping. Since the zero streamline geanerally
is chosen to represent the contour of the body; on the sur-
face of the body in purely subsonic flows, the velooity of
the compressible flow can be calculated from the lncompress-
ivtle flow by & simple "ecorrection formula.® This formuls is
given by equating the velocity q of the incompressible
fluid to the velocity function +tq of the compressible flow.

Thus
N L [r 2{r)
(U)o VAR t s/;: p(T,)

where the subscript © denotes the quantity for incompress-
ible flow and T(T) 4die given by eguation (175), This for-
mule i3 the same as that suggested by G. Temple and J, Yarwood
(reference 11), This ecoincidence of Temple's theory with the
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present investigation can be considered as a further substan-
tiation of the method,

For the supersonic regions, Ev(T) and gv(f) in (101)
should be replaced bdy

14

ED(T) £(7) 2¥(7) -cos (uw - 'ZT-> ' (210)

—_t < T<]
2B+ 1

% £(71) T'U(T) cos (vu)+ %-) i “(211)

1}

.G_’U(T)

where f£(1), T{1) and w(7) are given in (178) and (172);
then by writing .

ST) ci(pw-T)
.EU(T) s%. () {ei(vw 7. i{vw-T }

and substituting as before in equation (101), it leads again

0
to the sum of W,{(w;T)} and Wz (w;T), where

[==]
i v tw, "V
i3 }; {%n (twe®)” + Cp, (twe ) }
n=0

@y

£(71)
Wolw;T) = ;&T:T)' [

kS = - i -
+ eﬂ"' i T {Bn (twe iw)v + Gp (twe 9 D} ]
. n:o
and
WalwiT) = 4 Z {Gf).l)('r) w? + GSE)(T) W‘U}. 253;1<-'r<l
n=o

According to equation (100), W,(w;T) also can be summed:

mi

- i -
WalwsT) = i—fé% [e Ty (bwe™) + e Wo(twe “’i)] (212)
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Furthermore, from (178) 1% can be seen that |tw [= AU, A
being a constant given by ' ’

(s

(28)° |
A = 2(28) LI (213)

(1+ ) (267,)F T(T,)

which is a function of the Mach number and the characterletic
constant £ of the gas but independent of the shape of the
boundary, The value of this function A 1is given in tadle
14 and figure 12 for Y = 1,406, As a conseguence, the func-
tions conetituting the stream funetion for the supersonice
flow are ’

W;(G_,‘l\))
=3° :((T)-)- [\po(w w) + Y (3=~ w)+ g,(s+ w)»-rpo(a-w)J (214)
Ty _ ) ¢ '
? - w>0
Wa(qaﬁ)
= Y {Gf,’)(w) q’ + 61(,8)(7) q"_"} cos VY, U < Q< V. (215)

n=0 _ ' J

Here the funotions W, and @, are defined, on account of
(213), by .

Po (9= w) =y (AU, 5 £ w), Dol W)= o (AU, s w) (216)

where o, and V¥, are the velocity potential and the strean
function, respectively, of the corresponding incompressible’

) (a)

1
flow. The functions G£ (1) and G, (T) are the same as
defined in (205) except that 'AEU(T)' and AQU(T) now are
given by

. L
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;
B, (1) = 2,(1) - H 1% eon (b - E)

> (217)
Agb(T) = EU(T) - i%;l-T'v cos (vw + %>

-

1
Unlike the previous calculations, G§ )(T) in (211) is

not of the order of v~' due to the presence of 1/2 in front

of £(7) ¥ cos (vw - ), This, however, does not offer a
serious objection, ae'ahe series in which 1t appears already
converges with (tq)V, + ©being less than unity,

It is worth noting, moreover, that in the hyperbolic
domain the function wlﬁq,a) depends, aside from a factor
f(T). only on the two independent families of characteristics
defined by

E=13+UJ' n =4 -~ w (218)

This result is most striking, as it shows that the main part
of the solution satisfies the simple wave equation and thus
clearly demonstrates 1ts hyperbolic character., With doth
the incompressible stream function Wo and the incompress-
ivle potential funetion @y appearing in the solution, it
1g impossible to establish a simple relation between the in-
compressible streamlines and the compressible streamlines.
Since such g simple relation is the foundation of the so-
called speed correction formula for a quick estimetion of
veloclty distribution in compressible flow from that of in-
compressible flow over the same body, this idea cannot be
extended to supersonic regions, On the other hand, this
2ls0o indicates that although the differential equation for
V(q,3) is hyperbolic in the supersonic range, it cannot be
reduced to the siumple wave equation by a mere distortion of
the speed scale as given by the function w(7T), TFor if this
were the case, then V;(q,%) would constitute an exact so-

lution without the additional ¢§°)(q.a2. This fact is all
the more important as the additiomal Vz°’ (q,8) is not
small in comparison with W,(q,d) for the mixed subsonic

and eupersonic flows, especially for the transitionsl region
near sonilc velocity., However, in the case of pure supersonic

flow, W;o)(q.é) might be small; then V,(a,3) alone may
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be used as a satisfactory approximation, Of course, when

Y = =1, then, as in the corresponding case in subsonic flow,
the exact differential equation for the stream functlion can
be reduced to the simple wave equation, In this case, the
appropriate form for the speed function w 1s

wlq) = ~ tan™} // 1 (219)
q? ‘
R VAR
J Q1a - 01a

where the subscript 1 denotes the conditions at the point
of tangency of '‘the true isentropic curve and the approximat-
ing tangent, This agrees with the result obtained dy W,
Coburn, (See reference 21.)

16, Continuvation: Logarithmic Singularity

In the cose of the logarithmic singularity the function
W(w; T) was broken up into two parts of which only the omne
that characterizes the singularity was given in equations
(116) and (116).,: As an example, it is proposed to show that
this problem can bg treated by the same method. If the same
epproximation is introduced as in equations (195) and (201),
then the coefficients defined in equations (121) and (122)
become approximately:

- n .
1T (1) 1T (T,)
B, B e oo 6. £ & i (320
2 n f£(1,) ' B n (1) )

2
wvith B £ (1) s0 chosen that the form »o»f eguation

= &
3,

(207) is again preserved. With these coefficients and if
there is written for the function inside the circle gq = U:

NEO - (1)
v {a,8) = ¥(a,d) + V3 )(q..é)

Bauation (115) reduces to the sum of

£(T)
f(Tl)

%(‘1-"3)‘ ﬂo‘(tq.a),_ - 0<T< 1+ (221)—‘”
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"B
'"(1)(0 3) = ‘_;: L g (r) (9-)n cos nd qa< U (222)
L, n n U '
n=1 .
where
G (T) = F (7) ag_(1,) + sz, (7) (228)
n T tn 85T F(T,) T“(-r ) -
with
a '1
AF_n('r) = En('r) - f£(7) T (1)
_ > (224)
G (7). -
ag (1y) = -3( i) £ (1) T() )
Similarly, in the case of equation (116) it reduces to
770, = Bua, ) + 55 (a,0)
~ (
Here WY,(q,?%) 1is again the ssme as (221); while )(q,é)
is
“(°) / B ar £(r) tq
J) = = - -
(q.,9) e (T) (1 -7) Tt iy 1 T
g« §
+ i ;11-6510) (%) cos nd (225)
n=i1i
where
G,S°)(T) = & (1) AF (7,) + £73(7y) T%(7,) ag (1) (2286)
n n ‘ n
with
Fo(Ty) T7(Ty) -
AF (T,) = fg(Ti)- f(T:) , 86 (T) =g (T)~£(T) =" (1)  (227)
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Unlike the previous case, &(q,é) = Go(q,ﬁ) when, and only
when, ¢, tends to infinity. Because of (221), however,
the singularity of Y(q,9}) remains unchanged,

Again, if in (1186)

GrfT) = % f(T} =% (1) cos <nw + E)

is substituted for & (7), 1t can similarly be shown that

-5 N 5 N R
Vy(a,8)=2 2 ﬁ%ffj [@o(a+w)+go(é-w)-@0(6fw)+ ¢°(§-w)] §228)

v ~w=>0
T
~(o B L2
Vg )(q.6)==--—5i—-‘jf)(1- T) %l+ 3 @ £(7) {(log A= w)
a2f (Tl) 'Tl f(Tl
© §lo) -
+ —Z %) cos nd  (229)
n+l

where @0(6 T w) and @, (% £ W) are defined analogoualy %o

(216}, and A&dfT) in Eio)(T) is now given by
8¢ (1) = g (7) = L £(m) 27" (1) cos <nw+ g-) (230)

This seems to indicate that the results obtained so far
for VY,(q,%) are quite general: It may differ for different
cases, at most, by a constant factor, The general property,
however, is not shared by V,(a,d), the character of which
changes radicsally with the nature of the singularity and the
shape of the boundary. Hence, its importance in the present
problem is evident.
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17, The Coordinate Functions =x(q,8) and y(q,s)

dhenever the function X(q,3) for a boundary problem
i1s determined, the coordinate functions x(q,s) and ¥(a,s8)
can be calculated asccording to equetions (141) and (142).
Suppose, for instancs, a boundary is assigned with the prop-
erty that the function A(w;T) is truly described ty (94)
and (110), of which the real part X(q,3), defined within
the circle !wl = U, is

0
‘-—‘ ~ L
X(q,0) = ) 4, zér)(w) q® cos nd, q< U (231)
- R
n=o

where the constants Kn- in (%4) are agsin reasl and are re-

~

“{r ~
garded as known, and X ﬂT) = En(T)/En(Tl).

As the series is absolutely and uniformly convergent in
a< U, it can be differentisted pdrtialiy term by term with
respect to g and ¢. V¥hen the differential coefficients
Xq(q.ﬁ) and Xg(q,é) are calculated gnd are substituted in

equations (141) and (142), there results:

o
x(q,8) = Sﬂ n Kn :ir) %"t cos (n = 1) 9§
n=1
\’ ~ - 1 T\F n-1 ¢
~-BT ) oAy ﬁ—I~I I, (M) a cos nd cos & (232)
n=3
qa<7U
N (r)
v(q,8) = - Sﬂ n Kﬁ Enr q®"? sin (n - 1) 3
n=1
- + n -1 g n-1
BT ) Ap ;_I"I'En.1 (1) a cos nd sind (233)
n=1
where

(r) +) = Flay + B+ 1, by + £+ 1; ep + 1; T)
n.l F(an' bn; cn; Tl)

(234)
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Now, -since

(=2}
xolq,0) = Ez n En q®~?* cos (n - 1) 4
n=1
[+=]
¥ola,2) = - E; n &, q"" sin (a - 1) 9
n=3: - '
co
co(q.é) = }: Kn qn gin nd

n=3

by introducing the approximation given by equations (179)

and (185), that is

L2}
~—
—
-1
~
ih
PN
PR
~
~|
(14
o)
PN
_‘
~r

0<T<
2B+ 1

"'(r) =
Ennl (T) f(Tl)
vy defining - | -
(1)
x(a,9) = %3(e,8) *+ xz * (q,d) {285)
(1)
y(q,9) = y1(q,8) + y2 ° (a,8) (236)
it ¢can be shown by the same mﬁnnsr that
_ &l7) _ BT n(r)
x4 (q,d) 27 £(1) xo(tq, ) T E) Qo(tq,d) cos ¢ (237)
0 < T1T< 1L
- 28+ 1
(228)

BT nlr) {15(tq,8) sin?d

aitian et ve——

vi(a,9) = &L 40r) gy, (tq, ) -
f(Tl) q f(Tl
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and
( o]
xzi) (q,9) = 'n Kn En(T) q* " lcos (n - 1) @
n=1
=]
o~ [~d N=1 «
- BT }: n A, Gn’l(T) a cos nd cos 9 (239)
n=1
qQ<U
o]
Ygi) (q,9) = - }: n &y Gp(T) e" " ein (o - 1) 3
n=1
o«
- BT z; n Kn §n'1(7) qn”1 cos n¢ sin & (240)
n=i
where
B, (1) = Zleg *° B, by * Pi oni 7). &(1) ¢R(r) (241)
Flay, by Opi Ti) £(7,)
& (1)=2=l Flenthtl, bptprl; optdiT) h{T) \Bipy  (542)
n,1 n+ 1 Flap, byi cpi Ti) £(7;)

30,4

<3 (243)

Q,(q,%) =

On the other hand, the expression for X(q,8) wvalid
outside the circle of convergence is

co

X{q,d) = }; [ﬁ; B (1) o - &} E,(T) q‘v] sin vY (244)
n=o

provided the coefficients ﬁ; and 5; in (110) are real.

The functions x(q,9) and y(q,8) corresponding to (244)
can be found similerly, These are:
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oo
ok v-1 Ry —p-1
x(a,8) = Z {UBni'" (1) g’ tein(v-1)9+vC G, (1) & sin(uﬂ),s}
n=0
co
~ P m 1 ™~
-~ BT vBy V-1
BZ{n" 1Eu’1(7)q
=0
+ Ucz 51 Gv 1 (1) q U—l}.sin b*  cos ¥ (2L5)
U< qgq=<¥V
[» -]
v(q,8) = Z ‘2 PF,(T) a¥ lcos(v-1)8 ~ VERE,(T) d""lcos(ml)‘b}

l'"

=}

=0

~e

[»-]
- BT:Ez < VB 3 -3 Fya (1) o¥-*

L + 1 =
n=0 _
~ vV + 1~ °
* -DC; v - 1 Qp’l(T) q~V 1 }sin v sin ¥ (2L6)

Here the constants ﬁ; and E;

(109) and (110) and can be reduced to
B b

2 ~v T* o 7 i 4
T T (7, ), Cp o (r,) (257)

1 1

satlisfy the relations

o~
*
By ©

provided the same approximation 1s made as in (202)., Further-
more,

xO(Qt'b) =Z JL ]

n=o

VB, gV~ 1 sin (v - 1)% + uBn a”V-1 gin (v + 1»+



. NACA TN No. 995 79

. co
vola,d) = S- {Pﬁn qa’"?! cos (v=-1) 8- van av-l cos (v+ 1)&}
L

¢

and if Ev(T) and iv’l(T), for the high-order terms are
substituted by the asymptotic formsi: namely,

1t

v 7 = “Viry. 1
Ev(T) g(T) (1), Ev,1(7) Ep(T) D (1); 0<T<

2R+ 1

then in like manner (245) and (246) can be transformed and
can each be represented by the sum of twe functions xl(q,ﬂ),
y:(a,9), and =x5(q,®), yz(q,d8), where x; and y, are

the same as (237) and (228); while =x; and yz aret

~(a)

o (o)(q.6)= }: v 1)(-r)q tsin(v-1)8+ Gy (7 )Q'U'lsin(v+1)§}

zz Géli TV + Géfz(T)g—v-l} sin vd cosd (248)

T, £ T7T< 1
28+ 1

(°>(q.§)== }:v{ 1)(T)qv 1cos(v 1) = G( )(T)q-v-lcos(v+1)6}

n=o

- BT zu{"g:‘z('r) v, G-(a)(T) }sin vy gin d (249)

n=s

o]

are defined by

"'(1) nd T4 Bn .
F.(1) +

= £(7,)

. : & > (250)

§le)(r) - AC, g () + f( ) —=— H7,) 8§,
_ LEY

-

27(7y) aF (7)
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~(1) ~' ~ §n —U ~
G = AB, 2=l F + V(T F (T
u,1(-r) AB, o —v,l(T) Yoy (r,) A_v’l( )
(251)
a~.(a) o~ h - ~ 6 ~ >
G, (1) =aC, 222§ &+ —B_o%r1,) ag
Uyl v+l Vsl £(T,y) Uy
with .
~ Pel ~ v B
AR (1) = F (1) - n(1) 77(7)
v, 1 + 1 TV,1
} (252)
~ v+1 o« -V
G T G ) = h(T) 7°Y(T
A_U,l( )= oo1 &, (T h(T) () )
while 4B, and AEv(T) are defined just the same as those given

in equation (206),

"~ ~ u ~
P (T)Se(1) ™ (Whl F
E (1) Sg(1) 2708 z), £

g
v

Similarly,

_ i1f the hypergeometric functions involved in
the high-order termns are substituted by

=1 v ( 11')
Ty E4 Ty T rw+ I G
() 2 g(T1) cos , &

]

1(T) Zn(7) TVcos (Uw- u-—"4—'—>

10” ;%'h(T) T_Uco?<uw+u+%>

and by resolving the products of the trigonometrie functlons

into sums:?

2 sin (v - 1) ¥ cos (vw - %) =

2 sin (v + 1) ¢ cos (vw + I

for instance,

+ sin [(u-l)(é - W) - (w -2—'—)]

): sin [(v+ 1)(1~:+w)-—<w-g->:l

+ un[}v+1ﬂa—w)+cu-§>}

4

sin [(u— 1)(d3+ w)+ (w-g-)]

-
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o)

a brlef reduction gives when

< T <1,

+

2B 1

i
x}
fanl
-

x,(q,9) t (1) g(T)){‘{xo(& + w) + X (H - w)_lcos (E —(9

- [Yo(é +w) = Yo(¥ - w)] sin E-— u;)}

-

BT n(T1) : b4

- [@0(6‘ +w) - g (% - w)} sin G} + ;.D }cos S (253)

t (1) (1)

R EAURIT Rty PO

v, (q,9)

+ [Xo(& +w) - X, (8 -‘u?),:l sin GIT - QD ‘L
L { [ o s 0o €D

_[:GO(§ +w) -8 (8 - m)] sin <E - >‘} sin &  (254)

w

t
=

by the fact that at = AU 1in the interval under consideration.
Here

X (8 w) = xg(MU, & & w), Yuls £ w) = y (AU, & = w)

0o(8 xw) 28,(AU, & £ 0), Q8% w) =Q, (AU, & = o)
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where o ( %o
olasd) = 57
and
(o)
Xp (U.u )

= zz v {~£1)(T)ou-lsin (v-1)8+ Eéa)(T)q-v-isin (v+1) {}

n=a0o 1
. "(1) V-1 ~(3) oy =U~1
-BT ;: v GD,I(T)q + Gu,1(1)q } sin v® cos @ (285)
n=o
—t <7<
(o) 2B+ 1
¥a (q,é)
= }:1){E£1)(T)qv_1cos (vo1) =~ 652)(T)Q—D‘1008 (v+ 1)6}
n=o
& L6 rm 1 or)
-BT ) v {GU,I(T)q + 6, ,(1)q sin vd sin 9 (2586)
. n=o
~(a) ~{a)

where G, '(T) ana G, (T) retain the definitions given
in (250 a4 (251 F (T F T g (7
n ( } and ( ) except that A_v( ), E 1( ), A_v( )y

~ ¥
y T
and Agv,l( ) are replaced by
o~ .~ 1 v ( i w
AP (T) = F (T) = =g(T) T W -
E () =3 (1) - Lg(r) 1 cos I
Ai (t) = E= L i - B(T) il cos (vw -p -1
V,1 V1 V1 2 4
(257)
a6 (1) =g (1) - g(T) 7Y sos (vw + E—)
v P 4
~ ~ -V
Ag_ (T) = 2+ 1 _q-_ - h..(l). T cos (vw-l- 1+ T..I.)
v, 1 V-l "v,1 3 4 J
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respectively. It must be noted again that the orders of
&3 (1) and G£f1(7) are the same as those of &F (T)
and AEv 1(7). respectively, bescause of the way they are de-

3
fined in (257). 7For the same reason as stated in section 15,
this agsin cannot jeopardize the basic assumption of econver-
gence of the series.
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PART 1V

CRITERIA FOR THE UPPER CRITICAL MACH NUMBER
18, Limiting Line and the Breakdown

of Isentropilic Flow

The solutions congtructed in the previous sectlons are
known to be regular in the hodograph plane except at a few
singular points. It is =2lso known that for the limiting
case of infinite sonic spsed, or ¢, —> ®, the solution

will give the desired flow paettern in the physical plane,.
When the sonic speed i1s Linite or when the Mach numbar of
the free stream is different from gero, there is no guar—
antee as to the bshavior of the solutlon in the physical
plane except the probable continuity of the flow pattern
with respegt to the free-atream Mach numbsr, It is found
that such continulty in the flow pattern actually exists

up to a certain Mach number. In other words, the pattern

of the compressible flow 1s only slightly different from
that of the incompressidble flow up to a certain Mach anumber
at which the so-—-called limiting lines appear. At the limit—
ing line, the acceleration of the flow 1s infinite and the
flow is reversed, It was shown by Tollmsin (reference 12)
and Tsien (reference 2) that, without considering viscosity,
the flow cannot be continued across the limiting lines, and
a forbidden region is crezted in the space where no fluid
can enter, In other words, continuity of flow patitern erlsts
up t0o a critical Mach number beyond which no isentrople flow
is possible with the imposed physical boundary conditions,

The breakdown of isentropic flow, or the compressibllity
burble, can be effected in two ways, First of all, the ac-
celeratlon in the neighborhood of the limiting line is very
large. Thus each one of the following fectors gives apprecil—
able asalterations in the dynamic relations:

(a) Viscous stress due to ordinary viscosity of the
fluid (reference 22)

(b) Stress due to expansion or compression of the fluid,
or viscous stress due to the second viscosity coefficlent
(reference 23, pp. 351 and 358)
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(c) Small but appreciable relaxation time required for
the vibrational modes of the molecules to reach equilibrium
state (reference 24)

(4) Heat conduction from fluid element to fluid element

Secondly, the isentropic flow also can break down through

the appearance of shock waves. The breakdown of isentrepic
flow is associated with the introduction of vortiecity to

the flow. Thus the flow becomes rotational with part of

the mechanical energy of the fluld converted into heat
energy. All these factors tend to increase the entropy of
the fluid and finally to increase the drag of the body.

Thug the eriticel Mach numder so defined is of great physical

importance to the aerodynamic characteristics of the bedy
concerned,

Of course, the isentropic flow might dbreak dewn due to
the instablility of flow fluid with the final appearance of
shock waves, Furthermore, the action of boundary layer and
possible condensation of one component of the flujdl on the
flow might lead also ts the premature destruction of the
isentropic flow. On the other hand, shock waves can appear
only in supersonic flow; thus, if the speed of the fluild is
everywhere subsonic, there is no danger of the compressibility
burble., Hence, the free-stream Mach number for the first ap—
pearance of sonic speed in the field is celled the "lower
eritical Mach number"; while the free—stream Mach number for
the first appearance of limiting lines is called the "upper
eritical Mach number," (See reference 2.) The latter is
always higher than the former, due to the fact that limiting
lines appear only in supersonic flow., The actual critical
Mach number for the compressibility burble must lie between
these two limits and depends, among other parameters, upon
the Reynolids number of the flow.

19, The Condition for the Limiting Line

At the limiting hodograph, or the hodograph of the
limiting line, it was shown (references 1, 2, 12, and 13)

that

a(x’y'> 1 1 -

— - = (258)
3(u,v) ~ ( > [ <°2 F) wa]
1The phenomenon of condensation shocks due to water

vapor in the air flow around an airfoll was first brought to
the attention of the authors by Kate Liepmann, who observed
them in wind-tunnel experiments.,

{
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2
Since the factor before the term Wa is positive for

supersonic regions only, ¢ < q, where p #= ¢, the
limiting line can appear only when the local speed exceeds
that of sound., It should be nqted that the vanishing of
the Jacobian is the condition for the failure of the hodo—
graph method, ms the transformation (9) and (10) would mno
longer be one—to—one and continuous. Thus, the appearancs
of the limiting lines is then the physical counterpart of
the singularity of the transformation.

As V(T,d) 1is known, equation (258) defines two lines
in the hodograph plane:

3:.
— 2z
or [ =TTy -y =0 (259 )
. azT_l T S
X
27 !-—}--———T]" V. + ¥, =0, Tzt (260)
2 T 3
La“T-1 2p+1

Geometrically, this expresses the fact that th'e streamline
VY(q,8) = constant and a chasracteristic curve belonging to
either family has & common tangent (referemce 1). The
problem can then be formulated based on this properiy?

the necessary and sufficient condivion for the exisbtence
of & limiving line is that there exists a solution bstween
the two simultaneous. egquations

1--7 1 '
2 e e ) = 0 26
T [m2T~l} WT wé (261)
Vv =0 (262)
or
1 -7 % '
2T [maT—l] WT + ¢ﬁ= o] (263)
¥=0 (264)

where Y(T,8) 15 a definite branch associated with the
largest possidble T for a given boundary and a free-siream
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Mach numnber. The zero streamline is chosen, as 1t genersally
gives the highest velocity and is the place for the earliest
appearance Of the limiting line.

Generally, these equations may not possess e solution
for a known function V(T,3) when the parameter M; 1is
essigned. This means that there will be a2 system of bounda—
ries corresponding to a sequence of values of M,, for
which the limiting line does not occur, The first Mach
number for which equatione (261) and (262) have a solution
will Pe defined as the upper critical Mach number and the
corresponding boundary as the critical boundary.

The actual solution of the equation is, in gensral,
difficult owing to the fact that Y(T,3) is, in most cases,
represented by an infinite series. However, if the stream—
lines are determined in the hodograph plare for the calcu—
lation of the shape of the body, a simple graphical test
of whether there is a point of tangency between the zero
streamline and the characteristic can be easily made. On
the other hand, if the form (214) and (215), for instance,
is used, an approximate analytic solution can be obtalned

without involving much labor,
20, The Approximate Determination of the
Upper Critical Mach Number

( )As can Be seen from section 15, the importance of
0

L (r,8) relative to Wl(T,G) will decrease as 7T
s

recedes from the critical circle T = 2;'1 toward the

: +
supersonic region. For the first appearance of the
limiting line, T is,almost always high, especilally when
the boundary is a slender closed body. Let this be the

o)

casey then V5 (T,8) can be neglected in comparison with
V,(T,8) and a great simplification is possible, The zero
streamline then can be represented approximately by

Wr,9) SV (7,8) =0
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Furthermore, & simple reduction shows that the two palrs .of
equations, (261) (262). and (263), (264) reduce Tespec— .

tively +to | .o Lol T
6';(11) + Yi(n) =0 (265)
(8 + U (8) = O5(n) xﬁocn) o (.as'ei_:)

or =
BE) + Y=o - (287)
"D(n)—-\ll(n) = o (f) +\If°(§). I | '(.56'_8\)

where £ and n eare the characteristic parameters.definéd
in equation (218). This reduction is made possible .by the:

< T< 1.

fact that £(T) never vanishes in the interval :
26+1

Whenever the stream function W,  and the potential
function ¢, of the incompressible flow are given, the
functions @0 and @, can be easily obtained by substi-
tuting AU for ¢ according to equation (216), Then, .
since AN decreases with an increase in the free—streanm
Mach number M, as shown in table 14 and figure 12, the’
upper critical Mach number will be given by the largest
value of A thet gives a solution elther of equations
(265) and (266) or equations (267) and (268)., 4An analytical
solution can be nade, 'as the functions @o and ¢° are ¢
quite simple. : ' : e

. There is, however, an interesting direct geometridal
interpretation of these sets of equations in the physical
plane of the incompressible flow as shown by figure 13,
According to equaticies (216), the functions Wo and ®°

are the stream function WV, and the potential function ¢,

at the constant value of the speed - AU, Since A = 1, for
the body shown in figure 13, the constant speed AU curve
C, forms a loop symmetrical with respect to the y—axils.
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The variebles are really the anglse of inclination of the
incompressible velocity vector. Along the constant speed
curve GC) from the point Sz to P, the angle of inclina—

tion of the velocity vector is monotonically decreasing.
Therefore, the parameter of the angle of inclination can be
replaced by the distances along the curve CA‘ Let eguatlion

(267) be satisfied at the point S = Sg; then
)
®1(sz) = = ¥ (s5) (269)

This means that, at the point S = Sz, the rate of change
of the potential function o along €, 1s equal to the

negetive of the rate of change of the stream function Wo'

Since potential linas and streamlines in incompressible

flow form an infinitesimal square mesh, this condition
requires that the angle between the tangent to the curve

C, at S = Sz ©be 459, as shown in figure 13. This 1s
easily seen by remembering that from Sz; to P, the value
of the stream function increases while the value of the
potential function decreases, because of the indicated flow
direction. Thus the point Sy can be easily determlined dy
this graphical condition., Bquation (268) cen then be written
as . .

Cbo(S) - \I’O(S) = ‘I)o(sa) + \I/o(Sg) . (270)

If this condition is satisfied at a point S,;, then the
condition for a limiting line isg completely satisfied. A
similar graphical interpretation for the equations (265)
and (266) can be worked out for the side of the constant
speed curve lying to the right of the y—axis, From these
considerations, it is clear that the upper critical HMach
number is the lowest free—stream Mach number which gives
a constant speed OC, containing two points, S, and 82,

defined by equations (269) and (270),.
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PART V
APPLICATION —~ ELLIPTIC CYLINDERS

21, Preliminary Discussions-

o ¥

This part of the report is devoted to the application
of the general method, developed in part III% to the study
of the flow of a compressible fluid around an elliptic
cylinder. According to gsections 8 and 9, if a solution
were constructed about the stagnation point, the continua—
tion of this solution would regaire that conditions (102)
and (103) and, hence, (106) and (107) be satisfied. These
equations involve two sets of hypergeometric functions with
parameters m and m + 1/2, as well as their derivatives.
To shorten the lengthy ‘calculations, in view of the limited
amount of time aveilable, the following approximate procedure
was adopted.

Given the domain D, the solution valid in the annulus
region, rather than that about the stagnation point, was
first constructed., The constants which determine the Laurent
expansion of the solution, B*X =and ¢*, for example, are
now assigned and, consequently, the set of hypergecometric
functlens with integral parameters is not immediately re—
quired., The difficulty, however, is the question of whether
it is possible to continue the solution within the circle.of
convergence., This continuation may not be possible owing to
the stringent continuity conditions given by equations (102)
and (1083), and to the requirement that the function must be
regular within the cirecle q = U, i

This, however, dees not offer a serious objection from
the practical point of view. In the first place, the summed
function (W.,(qg,d), for instance) actually holds even within
the circle of convergence gq <« 7, and the correction funection
Volgq,d), 1ie generally small compared with WV;(q,d) due to
the closec asyuptotic approximation of the hypergeomestric
functions in the elliptic domain, In other words, although
the solution within the circle of convergence strictly repre—
sents a different flow, numerically it approximates very
closely that defined in the annulus region, In the second
place, since this region g < U 18 relatively unimportant
in the case of mixed flow, where T; is very much less than

1

2p+1

— that is, for free—strecam Mach number considerably less

.
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than unity ~ the inaccuracy of the solution is limited to a
small region in the hodograph plane. Furthermore, the most
interesting phenomena of such a flow, such as the appsearance
of limiting lines, always take place in the annulus region,
Therefore, this modified procedure, although unsatisfactory
from the general view point, is an expedient capable of
yielding an interesting result and furnishing - test of the
practicability of the propocsed solution.

The situation also may be considered from another angle,
The procedurs used in this section c¢an be derived by replac-
ing the functions §,(7) and {_,(1) with the approximate

values given in equation (201) in the expressions for the
coefficlients involved in the solution within the annulus
region, that is, (106) and (107). Thus the procedure may be
regarded as an appropriate method of approximation. The

1
2p+1’
This 1s indicated by the fact that the correction function
Wz(q,T), for instance, 1is very small in comparison with
¥,(a,%) when q < U.

error introduced is generally negligible if T, < <

Another gimplification is made by using the elementary
integral q~ 2V E, (1) instead of q~°VY QU(T) in the con-

tinued solution, as, in this case, E_U(T) is a vell-

defined function. In doing so, the asymptotic behavior of
the second solution remains unchanged because the first term
in QD(T) s always small in comparison with the second.

I1f, however, all the required hypergeometric funcitions
are computed, there is no difficulty in carrying out the exact
method developred in part III of the report for any accurate
study of two-dimensional flow. For this reason, the expres-
slons for the hydrocdynamic functions derived for both the
exact and approximate procedures for the problem at hand are
given.

In the numerical example, detailed calculations are made
for the flow of air about a cylindrical body derived from the
incompressible flow about an elliptic section with a ratio of
the minor and major axes equal to O,6. The calculations were
carried out for two different free-~-stream Mach numbers, 0.6
and 0.7.

22. The Functions zo(w), W (w) and Ag(w)

The irrotational flow of An incompressible fluid about
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ern ellintic cylinder with the velocity at Infinity parallel to

the major axis 1s represented by the complex potential
) (z )
o*“o

. e 1 '

Wolz ) = € + T (271)

with
eg

Zo = g + T (272)
For econvehlence in practical calculation, all the physical
quantities Z,» 4, and p, will be normalized consistently
throughout the present part., The major and minor axes of the
section are ‘respectively 1+ ¢ ‘and 1 — 53, where

€ <13 g=1 at infinity and o =1 when a = 0. This will
automatically render tho hydrodynamic functions dimcnsionless
and the constants U and p, will be eliminated from the
fermulds in the succeeding sections.

By differc¢ntiating (271) with respect to z

or ‘the di—
mensionless complex velocity of the flow is
a
¢ — 1
w =
2
(e~ ¢
Thus
1 2 1/2
-— € W 2
= — [ ] . 1 —ewl 0 (278)
1 —w

This function is two-valued with two branch points at w=1

amd w = €2, In order to make zo(w) o single—valued

function of w, the expréssion (273) is supposed to be the
principal value so that |arg(l—w)l <m7 and 1 <|w < e~ 2,
' -2

The condition !e¢® w| <1 mpust be satisfied, for w = ¢
corresponds to § = 0, which is another singularity. With
the principal value s6 defined, if the negetive sign in (273)
is taken, then the domain D corresponds to the half plane
Rt { <0 ana | §‘ Z 1, On the other hand, since the trans—

v
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formation (272) is one—~to—one when I{i > 1, then the
domain D, which 1s R} z, <0 with the region inside
the section excluded, corresponds uniquely to D.

Consequently, the inverse mapping function 1z (w) s

a 1/2 8- 1 /3
zo(w) = _-{[lii;ﬂ} + € [ll:gw} }- (274)

which will be single—valued, provided a cut is introduced
to Joln the dranch points in such & way that the argument
of (l-w) 1is restricted to «—n < marg(l—w) < wm and

l€"w] < 1., On sepnrating into real and imaginary parts,
it is found that as 0 < 6 < 2n

: 1/2
x (q,98) = 4'5% [{%(q.ﬁ) + J(q.éf}

] 1/
+ € {Ie(q,é) + J_l(q_,-&)} B] (275)

1/2
1

rolat = [{-uq.an J(q.a)}

r - 1/2
— P I (a,8) + 3 (q.éi} (276)

with w = g e—ia, where the functions I(qed), Iglq.d),

and J(q,8) stand for:

a
1—(1+¢%)q cos & + € qo®

1 —2q cos 8§ + g3

I(q,8) = (277)

' _ 2 e 42
1,(q,9) = 1 (1+€®) g cos 8 +e” g (278)

1 ~ 2¢%q cos & + €%¢°®
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1-2 ¢* cod & + ¢*g® 12
J(q,) =[ - 13 < q} (279)
1 -2 q cos & +q°

On the octher hand, substituting equation.(ETB) in equation
(271), the function Wy(z,) 1is carried over inte D; namely,

. ’ - 1 _ 1
W (w) =.-{L}‘€2W]3 + Lfl:%_]él (280)
lew 1-¢?y J

Now W (w) = ¢,(q,8) + 1¥,(q,d), and similarly

o (g,%) = 1 {I(c )+ J(q 19)‘\-’% v jI (g,9) + I (q ﬁ;L%:}(QSI)
o ] 2_%_ 1 o ] ] J € ) ? J
. ',!-' - -~ 1
Vo(a,8) = ‘%W?-I(q.ﬁ)-FJ(q.ﬁ)Ld- ~I_(a,d)+ J‘l(Q.GﬁLE}(282)
2% | | J € Ji

By integrating =z,(w), according to (87), the trans-
formed potential function Ao(w), agside from a constant,
takes the ferm:

Ao(w) = 2(1-w)® (1-€w)% (2873)

The principal value o¢f thig function is again defilned
by restricting the argument of (l-w) tn -m < arg (l-w) < m

and I1wi < €72, Within this demain D, the real and imaginary

parts arei

xo(q,¥) = 28 [X(q,d + L(q,®] (284)
0 & < 2m
0c(3,8) = = 25 [=X(q,¥)+1(q,s)]% (285)

as NAg(w) = %X4(q,%) - 1o,(q,*), where the -functions K(a,¥)
and L{gq,d) are defined by:



NACA TN No. 995 95
K(q,9) = 1= (1+e®)q coa & + ¢® q°® cos 2 8 (286)

L(q,¥) = [1-2 q cos & + qa]% [1-2€2 g cos ¥ +€‘q33% (287)

23%3. Expansions of Wo(w) and Ao(w)

The functisn W,(w) defined in (288) 1s single-valued

and regular everywhere in t(wi < 1 and, hence, possesses the
fnllowing expansioen:

Wolw) = - S A; w2, qw <1 ' (288)

n=on

where the coefficiedts A, are real and given by

Ap = 23,(11)- (1 + €3) s,(iz nz2l , (289)
AO = Esgi) = 2
with n
(1), 2y _ 1 D(pen+3)0(n+3) om
Sp7(e®) = i Z F(n-m+1)'(m+1) €
m=¢

Hewever, in the gpegien outside 11wl < 1 +the function
Wo(w) s doubled~valued; and when a cut is put between the

branch poeints w =1 and w = €72, +the principal value is
discantlinuous along the poesitive axis of reals within the
annulus region., To ebtain the desired expansion, the function
is written in the fepllowing form

i 2 - (1+e®)w :
Wolw) = — (290)
ch w% (1-w'1_)'% (1-—€3w)% 7
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- & ’
Now (1l-w™1) 2 (1-¢®wT2 is single-valued and continuous
within the annulus region; its Laurent expansion is

(1w™2 )3 (1-cPw)®

Sc(,o) + 2 Sflo) [egﬁ wh + w"n:l, l<twi< e™? (291)
n=y
where {f -
(o) 1N D (om0 (k)
Sa (€)= ﬂ[ I( m+j1>r(m+§) 0 (292)

-3
Substituting (l-w)" 2 (1~€ w) 3 from (291) in (290), the
expansion fer Wy(w) in the annulus region is

Wolw) = 1254 [@n e?® wV + o w4’], 1 <iwt < €2 (293)

when the constants Bp, OCpn and the exponent V are de-
fined by:
(o) ]
Bn = 2 € n+.| - (1+€3) S(O)
Cp = 2 s§°) - (1+ ) sﬁiz > (294)
v=n + %

7

Similarly, the transformed potential function A, (w)
can be expanded and is:

[e~]

Ao(w) = 2 :§, Ap wh, twl < 1 "(295)

n=o
~t
when the constants Ay, are

= s{P - (14e?) s{1) + 3 s(i)l

n-2

=2
]
i

-

(296)

. Do %
Kl ""'% (l+€2)| AQ =1 {

and Sgi) is given in (289).
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On the other hand, in the annulus reglon the expansion is

[04]
AU(W)-— 2i zz LBn € w +C W J, 1 < |w] < e3(297)
n=o
with the constants ﬁn andl En defined as

s (o) 2 (o) (0) S 1

B, =8 ", — (1+e®) s 77 + S 4.0 ™1

o~ 2 (o) ‘(0)

B =2¢ 53 = (1+e) 5, > (298)

=~ _ (o) a (o) (o)

c =58 .(1+ ) S ., S +a

(o)

a
where S, (€°) 4is defined in (292),

A}

24, The Stream Function W(gq,d)

The relationship between the domain D and D is
thus fully established and the functions corresponding %o
such domains are also given, From the general scheme de—
veloped in sections 8 and 9 the solutions for the similar
motion of a compressible fluid can be constructed., First
ef all, the stream Tunction Y(q,d) governing the subsonic
flow is tke sum of VY,(q,8) and VYs(q,d). Acccrding to

(207), (208), and (208), for 0 < T < 2543

"
&

U(q,) = __1_% 2T {[—qu,a) - J(tq,«w]

-

- [ ~ I(tq,9) + J”l(tq,é)Ji} (299)
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where the functions I(tq,8), Ic(ta, é) and J(t

Q,
are obtained from I, I., and r 5272) to (279

replacing q by tgq, + being defined in (195), For
g <1, the function Valq, a) is

a)
) b

3 oo
w2 )(q,a) = z; A, 6,(T) ¢" sin n 8 (300)
n=0

where A is defined in (289) end e, () 1in (199). For

g >1 and in subsonic reglon the function w;o (q,98):

(0)(q ) = Zi [ (1)(7) Eeﬁqv

n=o

+ G(a) -
»

(1) q v] cos v 4, O0< #< 2n (z01)

(x) (2)
where G, (7) and 6, (7) are defined by (205) with

the constants B, ard O defined in (294),

When the motion becomes supersonic, the continuation
of V¥,(q,8) defined in (299) gives

1 f( )

1(0,, 'B)-'é'

L~ I8+ 5, g)| ~ =T O+, g)j

: -:<>~,n>+;<x.n>]%-[-ze,<x.n>+rm.n)}%

<T<l

p-

% r _& 2B+1
— [ +I(A g )T (N, g)] - L~I (A, 5)4-J“1(x g)]

+ [I(X,n)+J(K.n)]%.i [ie(k,n)+-J‘1(A,nﬂ% }- (302)

according to (214). Here £ and 1N are the characteristic
parameters defined in (218). The upper sign in the last two
terms corresponds to 7 > 0 while the lower one, to n < 0.
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\u<2°)

The accompanying function (q,d) is

(o) o (1)
Wao (a,8) = ;Z [Gb (1) ™ q

n=0
(=) ‘-”]
+ G T os Vv < 7T<1 303
v ( ) q co8 L 25+1 ( )
(1) . (2)
Here the functions G, (t) and Gv (1) are defined by

(205) in conjunction with (217) in such a way that (303)
will be the continustion of (301). It also should be

noticed that the variable is restricted to < 7T <1

L
28+1
< T < 715“4, as 715—4 is generally

instead
2B+1

greater than unity, whichk l1lg impossible for the actual gas.

(1), -
It should be remembered that WV, (q,8) is always

negligidle compared with ¥,(q,d) within and on the unit

1
2+1
¢(q,6) can be approximately represented dby V;(q,8) alone
throughout the interior of the unit circle. As a consequence,

the calculation can be simplified consideradbly by constructing
first a solution for the annulus reglon by using F (T) in—

stead of QD(T) and making an approximate connection across

the unit circle. In that event, the stream function will be
reduced to

circle q = 1 when T, is small ir comparison with

.
*

V(g,d) = ¢1(q,a) (304)

when O < q < 13 here V,(q,d) 1is again defined in (299),

0 h h he < —_—
n the other hand, when T, T < Zp+1’

(o)
G(asd) = ¥i(a,8) + Yy (q,d) (305)
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(o)

where the function WV, “(q,8) which is small on q = 1
le given by

w2°)<q,a>== }: [?nGv(T) 2™ Uy cne_v(T){‘”] cos v & (306)
n=o

Here the functions Gu(T) and 6_,(T) can be shown to be

G (T)-'F(r)( ) - £(r) £, (T)-F(r)( )—-ii:l- ¥ (307)
f(Tl) f(T1)

and the coefficients 3B, and 0, are defined in (294),
The continuation of W,(q,d) is naturally the expres—

sion given in (&02) while that of (306) @iffers only in the
definition of G,(T) and G_ (T) which are

(r) 1 (7)) v
G(T)-—F (t)—= Emt‘cos<vw-—§>
3 <7<l (808)
_ (r) 1 (1) - "
G—-v("')-l_v (7) -3 77 t ° cos (vw+z>

25. The Coordinate Functions =x(q,d) and y(q,ﬂ)

With the functions 2 (w) and A (w) defined in

sections 22 and 23, the corresponding functions Alw;T)

and conseguently z(w'T) for the motion of & compressible
fluid can be constructed, . The coordinate functions defived
from A(wiT) are given. respectively by the sum of two
functions =x;(q,8) and y,(q,8) which, according to equa—

tions (237) to (238),are
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e BT) g(T) T 1%
xl(ch.ﬁ) = 2%_ f(‘l‘:_) {J:I(tq.é) + J(tQi-’a)J

+ ¢8 [Ig(tqnﬁ) + J~1(;q'ﬁ)]g}

Elh(T) b sin 28 ---l+4ea-1:qcotsvf}—€a

+ J(tq,0) + €2 2 (tq,é)}- (309)

_8(7) g(T) - %
yl(q_,'a) = 2% f(Tl) {[ I(tq_.v&) + J(tq,é)J

- ¢ [— I (tq,8) + 37 (tq,ﬁ)]?}

h(T) t sin®3
gT
f(Tl) co(tq,é),

{-—1+4€8'l',qc',os15--'<-:2
g
+ J(tq,8) + € I “(tq,d) (310)

wvhere Go(tq,é) is obtained from oo(q,ﬂg in (285) by
i

replacing q by tq. The functions I(g (qg,9) and

yzl(q.,ﬁ), according to eguations (239) and (240), are

[o=]
(1) .~ 9~ —
xz (q,9) = 2 Z n A Gn(T) qn ' cos (n-1) ?
- n=1 '
o«©
— 2BT Z n In an,i("') qn-l cos n & cos 9@ (311)
n=1

q <1
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[e=] .
(1)(q,é) - 2 ST n Ay Gy (T) q®2? gin (n=1) 9
n=i _
N .
- 2BT }: n Ay Gy 2(T) q®? cos n ¥ sin 4 (312)
n=i

Here the functions Gn(T) and Gpn,1(T) are defined by equa-
tions (241) and (242) and the constants Ap by (396).

The same funcitions valid in the annulus reglion are
agaln represented by the sums x;(q.ﬁ) + xg(o)(q.é) end
y1(a,8) + y5°7(q,9), where =,(q,8} and yy(q,9) are
defined by equations (309) and (310}, respectively. When

st i, 2o Na0), ana p{00(q,0) are

(==

xgo)(q.a) = - 2 2: v [ (1)(7) €qn gV=1 gin (v=-1) ¢

+ aéa)(f)q‘”“lsin (u+1)ﬂ]+ 2BT Ej v [aijz(T)eaan*l
~ =
+ 5(9)( —V=1 '
- Gy T) q gin v 9 cos ¢ (213)

(o)(qp8)=- 2 Sﬂ13[GD (T)eanqv—lcos (v-1}9
n=9Q

+ Géa)(T) q V" cos (v+1) a]

+ 28T Sﬂ [ Gy, 1(7) @R gV, (3)(7) :Fin.véain 3 (314)

The functions G(“)(T). 5(“)(T) are defined in equetions

(250) and (251) together with equations (252) with the con-
stants ﬁn and Gn defined in equations (298).

On the other hand, when 251 1:< T <1, the continued
+
expressions of x,(q,%), ¥i1(a,%) across the criticel circle

T = EE%TT are, according to equations (253) anda (2B64),
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xl(QJ‘ﬁ)

4

§(T) . glt) %
A Ey

o+

. % %
¢ fre(x.i) + J*I(A.E)] I(x n)+J(7\,n)]
%

B ol o (33

_E.é.'r (F.- I(A E,)+J(>» ﬁ)] - [-—I (X, 8)

2 ( 1)

%
o] _[--:(x n) ¥ 3(x, nﬂ

=

—.

—_ BT h(T) cos 6 A sin ¢
+ J (x.n) s:.n(———) PR {LGOC"\:i)

X (—-— 1+ 4 ealx cos £ — e? + J(N,E) + e J”‘i(k,f.)>

A sin n

— 1+4 €5 A ccs n-—eg + J(A,n)
o,(A,n)

m A sin

2 -1 '
J A + -
._( ,ﬂ_))] cos <u. 4/ X ——_—H»i

X (1 — 4 €5 A cos tE + e+ J(N,E) + e? J“l(x,§)>

2
<1—~4€ kcosn+ea+J(?\,n)

S (k,n)):!sin <u+—2->} (315)
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- 3
t(T) gf T) 2
ralas) = £ ;;15{[— 1a,8) + s8] - el

+ J—l()\,ﬁ)]%+ [:-—.I(A,n) + J(-)\,n):l%-— e? [—- IN,n)

3 . ,
o t(1) elt) [
+ J (Mﬂ)] }vcos (—Z- - uy + —57E e(75) ﬁ\"[I(Kuﬁ)

'+ J(k,t)]%— ¢® [IEM.E) + J-l(h.i)]%

% r &
+ [I(K.n) + J(i\.n)} s lIE(h.n)+J"1(>~.n).‘ }

™ BT n(7T) sind A sin £
SEICEDE Zq £(T1) {Lcéu.E)

X (—- 1+ 4€° N cost — € + J(A,E) + eaJ"l(k.E)>

A s."m't‘}\__l + 4¢2 N cost — c? 3+ J(K.Tl)> .

o (h,m)

+ €2 J_I(K,nD] cos (p. + -g) —[%—?—%—II—ELE-)- 1 — 4¢2 N cos ¢
o} ? =

N sin n
0

<1 — 4 e:2 A cos N
. (A,n)

+ €% & J(n,b) + ¢° J'l(k.§)>—-

+¢2 + J(A,m) + ¢ Jd(hn))} sin (u + -E-)} (316)
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While x,(a,d3) and y,(q,%) remasin to be defined by eaqua-

tions (313) and (314) except the functions g%“)(T) and

Ei?z(T) are replaced by those given in equations (250), (251)

together with equations (257).

By the same argument as that used for the stream function,
the practical calculation of x(a,s) and y(g,d) can be sim-

plified by neglecting xgi)(q,&) and ygi)(q,ﬁ) wvhen gq < 1;
namely,

He

x(q, %)

¥(aq,)

x,(q,¥) (317)

v, (q,®), 0= a=1 (318)

e

where x,(q,%) and y,(g,%) are defined in equations (309)
and (310); and in the anpulus.region

(g, %) = x,(q,8) + x5°) (q,¥) (319)
T, < T <1
y(q,8) = y (q,9) + ng)(q,ﬁ) (320)

Here xl(q,&) and yl(q,&) are either given by equations
(309), (310) or (315), (316). The terms x§°)(q,&) and

y§°)(q,a), on the other hand, become
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il

(o]

) o~ 'D__ R

x2° (a,9) -2 __JIJ[BnGU(T)ean a ' sin (v - 1) ¢
n<o

[=-]
+ 0,6 _,(7)q sin (v + l)ﬁ] + 2 f7 __Jv{%nGv’l(T)e .
n=o0

bed | omom -V
X q + GnGv'l(T) q 1] sin V4§ cos 4§ (321)

(o]
ygo)(q.ﬁ) = —2 E;v (ﬁgav(T)ezn ¢’ cos (v — 1)

. n=o
®
—GnG_D(T)q—u-l cos (v + 1)6] + 28T EJ v[BnGv,l(T)gzn
. - A0
X g’ + Eng_v.1 q‘v‘l] sin vy sin @ (322)
For T15T<-§§J—E, the functions G (1), Ev,l(T) are
4
defined =as
o ~(r) ~ ~(r) -
Gy(r) = BTy - B0 Fray 2 57 - B2l Y (520)
v £(7q,) -V £(7y
Byl = 2= 50y _nln) o
v+ 1 Tw,1 £(T,) .
_ (224)
G. (T = L F(r) (T) -—.ELI-Z—- e
-Vl -1 =Vi1 £(T1)
For _— <T<1
28 + 1

~ _o=(r) 1 g(T) v ™ )
G'U(T)—E_v (T)—-Ef—(—.;:-)-t cos <va)—z>

(325)

~

G_p(7) = iﬁ;)(Ti -1 elr) 7Y cos (vm+ E)J

+y

2 £(7,)




YAGCA TN No. 995 o 107

v —1 =) _1n(T Vo, -y =T
Gy (1) =75 E (1) =53 Ty bocos <vw b ;)
| (826)
v.+ 1 ~(r) h(t) -v ( ﬁ)
= +p o+ I
C—U,l(T) rpm— Ethl( ) TETD) t cos -{: VW ) .

CONCLUS IONS

As an example, the motion of air past a qylipdrieal body
was considered by taking ¢ =,%. The flow patterns in the
T,6— plane for two free—stream Mach numbers M; = 0,6 and 0.7
have been calculated and were given in figurep 14 ana 15, It
should be noticed that there ie conesiderable distortion in
the shape of the bodies in the compressidble flow from that in
the incompressible flow, If the compressible flow around a
given body is desired, a series of computations should be mads
with various geometric parameters €, 80 that the desired
body shape at a definite Mach number M; could Be picked out.

These computations definitely demonstrate the practica-—
bility of the proposed method. They also show that, in the
case of two—dimensional motion of a compressible fluid, the
mixed subsonic and supersonic flows exlst within the field of
an irrotational isentroplic flow about a suitadble body, and the
transition from one to the other is continuous and reversible.
Furthermore, the brealkdown of the irrotaetional isentropic flow
depends soluly upon the occurrence of 1limiting lines which, in
turn, is determined by the condition at infinity or the shape
of the boundary, while the magnitude of the lscal speed at—
teined is immatce¢rial. In the case of My, = 0,6, the lrrota—
tional supersonic flow continues to eXxist up to the local Mach
number M = 1.,25; whereas for M, = 0.7 it breaks down- as
soon as ¥ = 1,22 is reached. The singular behavior of the
streamline 1s marked by the point of tangency of V¥ = 0 with
a characteristic at M = 1.22,

The calculation of the flow pattern in the physical plane
is yet to be completed. When this 1s done, the pressure dis—
tributlion can be conpared with that over the same body of the
ircompressible fiow, '

Guggenhein Aeronautizal Laboratory, .
California Institute of Technology,
Pasadena, Calif., April 17, 1945,
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APPENDIX A
PROOF OF THEOREM(52)

To facilitate the discussion, equation (71) is first
written in the form:

%, (6,007 = £000(r) 4« - ¢y 4= 0

where
§1(T) = Ev(l)(T) + ;-(-]_-QE—'FS_ + 'Yv('r)
£ (1) = £,030(n) + =Bl (1)
and
&
Yp(7) = {1 - (28 + )7, 8%7% 9 + 41 - ;)aﬁ}f
' - 1 - ua(l - T) TV RG(T)

when v is large, the character of he functions ¢ and {g
caen be easily studied in the' T, ﬁ -plane (fig, lG} by neg-

lecting the third term under the radical gign, This can be
Justified in the following manrner: Coneider the case wksn v
1e posltive and large but not an integer. In the interval

0< T < EEQ:_I; ED(T) << F, beciuse FU(T) ; T ?EJD(T) by
equations (35) and (55), Then %2 R (T) ~ T_E'Tl—v. There-
fore, 75 Ry(T) >> 1 .when v is 1arge. But both Fyp(T)

and F,(7) are continuous vith reespect to v; so the fore-

golng result applies equally to the case of integral v.
Hence, the third term in the radical for YU(T) can be neg-

lected for large v,
Owing to the manner in which Yv is defined, correspond-

ing to each v there is a line T = T, >-—EQL——. such that
' 2B + 1 .
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s .
EWi(T) 2 0 when T< 7T
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S o.-'kéad-coneequence ¢ and t; are
real or,comple% conjugate according as T § Tor In
0< T<To, Ly = and {5 = 0 will. give two l-parameter

families radiating from (O, 1) and (0,1), respectively, and
joining togethgr &t . a point where Y,2 = 0 If 0< T < Tos

the produét ¢{;{p may be negative or positive according to
whether the point lies to the left or”the’ right of the curve
(1 = and {z = 0. On ‘the other hand, f T > T4, l1la

is alwaysfpcsitive.

5
LY
b "

’ .
Now £ ( )(0) = ﬁ,_ while the 1n1tﬁa1 slope of ¢y, =0

is E(}.hﬂ_> “ the 1ntegra1 curve must lie above £, =0,

L “

~_and.below §3 = 0 TS it,were not, the inte ral curve would

eroas the curve:I§1 = 0, £z = 0, where E1,1 (1) = 0, and

”;gafl)(wy would be negative somewhere in 0 < T < N S

This is not possible, for: ﬁv ~ E—v by an argume%t simi-

lar to that used for determining the.magnitude of T2 RD(T)

and according to (55) J/l - (2p7+ 1)7 o ¢ > -(1 - T)B in
l - 7T -v

0L TX<L, 1 '. Fence § (1) >0 in O0<TX< 1 _ ang
‘28 + 1 — 28 +1

g (2) continues. to 1ncrease until it 1ntersects with 1= 0
After 1t crosses the curve {, & 0, Ev'(l) <0 @and never
changes sign as {,(, > O :in o< T.< 1. ‘Consequently,

ﬁUK%)(T) 1s monotoniec and decreasing in the interval
To < T < 1. When v is sufficiently large, T will ep-

)
proach very rapidly to - and Tq = —t when v
becomes infinite. 28 + 1 28 + 1

Proof of theorem (52).- Form the following identity:

xl(nv(l)) (ﬂ'})(l) - glv(1>> + (nu(l) _ Ev(l))[l :ﬂ_ . -2_1: (nv( )

T

_ (1) (1) a7
iv(l))] + ; € (1 - T)a6 U,J My "+t ) sinh U¥/n0n (x)
o

PR T 20  (a1)
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It can be shown §hat the differential expression possaeseex an
integration factor ,
(ﬂ (1), g (1))7Bv (1 _'i)-éﬁ 3 82 , (a2)

where ' S

= R (T )exp {'T/;(E (‘) - 1)dT}
SP=S(T)em{f(ﬂ(1) 1 }

It will be notiged that the sign of (A2) is determined by the
eiret factor  (M,{1) o £,(30). oniy. on mltiplying (A1) dy -
(A2) and integrating the resulting total differential from T,

to T, with a suitably chosen initial value ngl)(T ) = E(l)(T )
it 1s found that o " _ o

.

%(nv(z) 2 (17)a a”(l - T)"ﬁ RZ 8%, + (% R (To)s (To>

X cosh v/('ﬂv '-' (1))‘“- 1]> Q

- which i@ posiyiie:;f:énd only if nb( § (1)
where in T, < T < 1. Since both E (x) gnpa ﬂv(l) are con-

tinuous and monotonic, the condition 18 both necessary and _
sufficient. Furthermore, it should be noticed that the condi-

0 every-

tion 1 (1)(7 Y = £y (1)(7 ) is purely a convenience. If

ﬂv<:)(To) # gu(l)(To). the validity of the theorem is not in *
the least impaired, ‘ '
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APPENDIX B
‘PROOF OF THEOREM (88)

Consider the first series: Multiplying throughout the
ineauality (58), namely,

E (1) >/-i-:‘-?£+—£)-1, 0 < 7 <t
/ 1 - 7T 2p+1

by g% and inteérating both sides from <+ %o T, shows
that

(r)

F, (1) < t7(7)

T, (7) : )
where t,(T) = T ) > 1., Then it follows that
1V’

Ay Eér)(T) wll < An(tlw)n

Naw ;E:

n=o
equation (88), By Weirstrass's theorem, the series (92) is
uniformly and absolutely convergent if }tlwi = t,q < U,
Wow +%,(71,) = 1; thus +t,q 1is eaqual to U when q = U and

= ,. The term t,q 1is zero if a = 0 and remains positive
for 0 < q < U. By the definition of T,(T) given by eauation
(56), it can be easily shown that

Ay (tlw)nl converges when |t,w| < U due to

d
— >
g b2 >0

for 0 < T < Ty. Thus t,q 1increases monotenically from
zere to U in the interval O S 7 < 7,. Therefere, the

series (92) is uniformly and absolutely convergent in any
closed domain in jwl < U,

Similarly, the convergence of the series (94) can be
established.
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APPENDIX ©
PROOF OF THEOREM (98)

It is observed that the following identities exist
among the constants involved in (98) and (99):

o0
B U = - -t }: AL +
- S e e —-+———- v
n 2vm ( n—v (m )

m=o

o
o 1l m 1l 1
¢ U — AT —— P ———— T
o T Zom }Z m (p+v v (m—v)
&

Now, by the inequalities (58) and (59), the functions
L}TI). E_U(Tl) can be bounded both above and below for

1l

all v=k0, when 0 =T S_'é-é—-i-. And if a smaller velue of
+

a(Z,,F,) 4is taken, it can be deduced that

vhere M; and My; are constants independent of n. On the
other hand, from the inequality (58)

Ve e

B
Ev (1) < (1=, 0 2B+1

1A
-
A
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it follows that

E,(T) v
_BS___ < t5(7), T,STE< 1
E (1)) 28+1

Consequently, the first part of (101) can be dominated:

1 v
3y B,(T) W | < 1B (bew) |

7 T)

Tz( Tl)

where t(T) = . The continuation of this inequality

for T >~—jL- can be easlly done by defining a new to(T).
28+1 .

v E T .
By hypothesis, Sr an (taw) ; convergaes if itpwi< V.,
n=o
Since to(T) < t(7,) for Ty £ T <1, the inequality

ftegw i< ¥V is uniformly bounded,

Similarly, it can be shown that

low -v i -v
jcx & (1) w ! < [o_ (t3w) ]
oo
- . v
But 2; l ¢, (tyw) l converges if |t,w! > U, Since on
{w) =Iﬁ-°tl(T1) =1 and = log itlw’ > 0 when O0<T <o
dq 2E+1
or -+ ltywl = 0 when < T <11, the condition
28+1 :

| t,w! > U holds for all T 4n T, < T <1, Hence, by

Weierstrasa's theorem the series (101) converges uniformly
and absolutely in U + 8§ Si1wi =V — &,
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TABLES OF THE HYPERGEOMETRIC FUNCTIONS

The values of the hypergeometric functions given
in tables 1 to 5 are calcuvlated from power series for

Y = 1.405, The function F n l(1) in table 6 is con—
V.

nected with F (1), F_(7), .ama E, (7) through the
} L)

folleowing equation:

plvtl) T () § ()
2(13""1) v -v,i
cP E ) =EE gy 5 () - e
—p 2{ v+1) v, ~v

This is simply the Wronskian of the two indevendent inte—
grals of the hypergeometric eguation and it holds every-—
where except at the singulavities T = 0 and T = 1,
Tables 7 t0 12 contain the corresponding arproximate funec-
tlons as indicated.

The numbers in these tables are expressed in terms of
eppropriate powers of 10. However, a2 notation wes devisad
in which only the powers are given wnhile the base "10" is
omitted, Thus, 3,14159 x 10" = 3.14159, m, Here m nmay
be either a positive or negative integer, or zeroc, Unless
indicated by the sign T on the heading, accidental errors
were detected and eliminated by the differencas metkod.
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TABLE 1,- CORRESPONDING PARTICULAR INTIGRALS FOR THE SOLUTIOHS
OF COMPRESSIBLE FLOY AND INCOMPRESSIBLE FLOW

Compressible Incompressible
V p (7 cos V8 ) cos v§
17 Ey(T) sin v® q sin U3
- cos VL8 -p cos VO
9 QU(T> sin VO q sin V8
y(a, o) -
J/ (1 - T)B dr log a
T
8
v cos v v cos VO
7 B0 gin ve a sin v
- cos V6 -p cos VvE
a &, (T) gin ve q sin Vo
X.(G.i 9) - 8
/ (1 - 7) ig log ¢
8 e

The functions F (1), q'zugv(T) and F,(7), q'gUQU(T)

are respectively the two independent integrals of equa-~
tions (27) and (28).

TABLE 14

T A M T M T M

0 . 0 0.17 1.0057 0.28 | 1.3858
.02 2.2554 .10078 .18 | 1.0kb12 .29 1.4202
.ol 1.6376 . 20576 .19 1.0763 .30 1.4548
.06 1.3751 .31521 .20 1.1111 .32 1,52u4k4
.08 1.2267 ook .21 1.1457 .34 1.5950
.10 1.1322 HUHET0 .22 1,1802 .36 1.6667
.12 1.0697 67340 .ea 1.21k5 .38 1.7398
R 1.0283 . 80391 . 1.2498 Lo 1.81k0
.15 1.0141 ' 25 1,2830 U2 1.83910
.16 1.0041 , 94062 .26 1.3172 LUl 1.9698
.165 1.0011 .27 1.3515 LL6 2.0510




TABLX 2
F T T ¥ T ¥ T
.| Bt et /ol Epat™ Torat™ Iysst™ Larsl™ Igsat™ E)pral™ Losa(™ LA
0 [ 1.00000, O l.00000, © | 1.00000, O | 1.00000, O | 1.00000, O 1,00000, 0 1,0000p, O | 1.00000, © | 100000, © | 100000, -0 | 1.00000, @
«1Q | 9.40562, -1 | B.26748, -1 | 7T.23508, -1 | 6.81728, 1 | 6.50840, -1 a,79688, -1 | 4.17817, -1 | S.83614, -1 | B.1633Q, -2 | 2.96157, -1 | 2.5, -1
12 | 9.20281, <1 | 7.94804, -1 | 6.76636, =1 | 6.72109, =1 | 4.83487, -1 4,08015, ~1 | 343978, -1 | 2.88773, -1 | 2.48980, -2 | 2.06332, ~1 | °1.72YB9, A1
J4 | 8,18117, =1 | 7.63%45, -1 | 6.20660, -1 | B.18693, 1 | 4.22F13, -1 B.44v8l, -1 | 2.808Y6, ~1 | 2.26561, =1 | 1.66821, -} | 1.50887, -1 | 1.22678, -1
+15 9.12605, =1 ToABBOT, 2 B.078T8, ~1 | A4.B0498, w1 3.94290, =1 5,16180, =1 £.52060, -1 | 2.02)24, =1 | .61322, -1 1.28641, w1 1.02496, ~1
W16 | 9.07L45, =1 | 7.53892, 1 | B.85410, ~1 | 4.65282, -1 | B.67498, -} 2.89%41, -1 | z.272M1, -1 | 1,781%, -1 | 1.39815, -1 | 1.09210, -1 | B8,6243T, -2
«185| 9.04429, -1 | 7.26018, -1 | 5.7ES10, =1 | 4.50033, -1 | 3.54821, -1 2.7¢621, -1 | 2.a5219, =1 | 1.87109, -1 | 1.29659, -1 | 1,003, 1 | 7.76697, a2
«17 | 5,01726, -1 7.1919¢, -1 6.55505, =1 | 4.41018, <1 | 3.42087, =} 2.64883, -1 | EB.0NT2, -1 1.B858L, -1 | 1.20163, =1 | 9.20856, =2 | 7.04764, 2
JITE| 8.99038, -1 | 7.119%0, --1 | B.55249, 1 | 4.20%38, -1 | 3.20881, =1 2.62408, -1 | 1.92011, -1 | 1.468685, -1 | )1.13336, -1 | 8.44275, -2 | &.59285, 2
o8 8,98865, -1 T.04T10, -1 546130, =1 42176082, =1 5.18004, =1 2.41012, -1 1.82027, =} 1.37102, -1 1,08088, <1 7.72060, -2 G.TEOOM, -2
Jdes| e.9184, -1 | 5,97663, -1 | 5.35M0, -1 | a.csspe, -1 | 3,08448, =1 2.20056, -1 | 1.71898, -1 | 1.2B1ll, -1 | 9.62408, -2 | 7.06636 £ | 5.25290, -8
19 | B.p1MT, -1 | 8,90d461, -1 | B.25281, -1 | s.esess, <1 | 2.emeon, -) 2.19288, -1 | 1.62218, -1 | 1.8682, -1 | B8.702BE, -2 | 6.4488), -2 | 4.7R228, -2
-195 | 8,88380, -1 | £.8341), -1 | B.15665, -1 | B.845M0, -1 | 2.8a274, -1 2,09005, -1 | 1.52085, -1 | 1.11625, -1 | B,10847, -t | B.P6489, . -2 | 4.25122, -2
-20 | 8,88Y4%F, =1 | 6.T6417, -1 | B.05952, =1 { 3.73707, 1 | 2.7sedR, =2 1,90085, -1 | 2.44108,~ -1 | 1,02880, -1 | T.48388, -2 | 5.3468%, -2 | 2.81%00, =2
«£l. | A.8071B, -1 | B.62ERS, =1 | 4.07834, -1 | 2.830%0, =1 | 2.53258, =1 1,80216, =1 | 1.27801, =1 | B.BB4B4, -2 | G.2960E, .2 | 3.,40048, -2 [ 3.06807, I
«22 | 8.76312, -1 | e.48974, -1 | 4.68817, -1 | Z.B3LTR, -1 | R.54028, 1 1,62011, -2 | 1.1268%, -1 | T.7e2Rs, -2 | G.RBE29, % | 3.60218, -2 | 24518, -2
W23 | 8.70161, <1 | B.36571, -1 | 45006, 1 | 3.14141, -1 | 2.,15882, -1 1.406689, -1 | 1.08852, -1 | 8.61805, -2 | 4.30813, -2 | 2,90644, -2 | 1,90956, P
W24 | 6.65084, -1 | 6.22379, -1 | 4.3%8m, -1 | z.85001, -1 | 1.98782, =1 1.31885, -1 | B.8F039, ~R | 65.63245, -2 | 3.65264, -2 | 2.526Z4, -2 | 1.47890, -2
«25 | 2.59991, -1 | 6.08388, -1 | 4.16R07, -1 | 2.7M38, -1 | 1.82708, -3 1.18145, -1 | 7T.54338, -2 | 4.76140, -2 | 2.97302, -2 | 1l.857AD, -2 | 1.12007, .2
<26 | B.E49TE, ~1 | 6.86618, -).| 4.00425, -1 | 2.61721, -1 | 1.67681, -2 1.06480, -1 | B6.53836, -2 | B.99519, <& | 2.40788, £ | 1.43192, -2 | B.3BOMO, -3
o27 | 8,40908, -1 | 6.84048, =1 | 3.84507, 1 | 245734, -1 | 1.83¢01, -2 9.530418, ~B | 5.8362¢, =2 | B.32289, -2 | 1.93562, -2 | 1.09663, -2 | B.085%4, -3
28, | B.ds0fE, -1 | 5,70688, -1 | 2.09048, =1 | 2,30457, =1 | 1.40084, =1 B.51600, -2 | 4.8265T, -2 | 2.736e4, -3 | 1.81TES, -2 | A,20183, -5 | 4.28202, 9
#25 | Ba401TT, -1 | B.6O518, -) | 354084, -1 | 2.15869, -1 | 1.27838, -3 7.58811, -2 | 4.10444, =2 | 2.23067, -2 | 1.17408, -2 | B8.962Bl, 5 | 2,88T31, o3
230 | B.38332, ~1 | B.4TBET, -1 | B.35488, -1 | 2.01951, =1 | 1.16985, -1 S.ud4493, -2 | B.s2M, -2 | 1. reg2s, 2| A.evEese, -3 | 4.eeTR, -5 ] 21,7808, -3
«3% | B.26TTY, -1 | G.24232, -1 | 301819, -l | 1.76038, -1 | 9.49764, =2 4,89040, -2 | 2.301R8, -2 | 1.09649, -2 | 3.B89T, -3 | 1.63491, 5 | s.05965, -4
-3 | s,18261, -1 | B.018P%, -1 | 2.8548l, -1 | 1.62658, -1.| T.0TTRS, -2 I.AL890, -2 | 1.08802, -2 | 5.UT068, -5 | 1,763, -3 | l.617BE, 4 | r3.44849, -4
«36 | 8.07182, -1 | 4.70828, <1 | 2.80809, 1 | 131570, -1 | 6,11184, -2 2.58187, -2 | G.43080, <3 | 2,5383%, -3 | 360867, -8 | -E.M0T6, ~4 | -A.15150, 4
.58 | T.98111, -1 | 4.5882, ) | 2,37908, -1 | 1.1%33%0, -1 | 4.77886, -2 1,76808, -2 | 4.6bAR6, <3 | R.P0B1Z, 4 | =0.08482, «§ | -B.86304, 4 | -G.55445, 4
40 ¢ T.89228, -1 | 4.38870, -1 | 2.1B418, =} | 9.52880, <2 | 5.64002, =% 1.10841, -2 | 1,88260, ~3 | -1,083T1, ~5 | =1.31§17, =3 | «B,99301, 4 | -5.51188, -4
2 | 7.80612, <1 | ‘4.19814, -1 | 1l.983E9, -1 | B8.00784, -2 | 2,70013, =2 B.0SUEY, -5 | E.F4370, ~4 |«l.TT020, 5 | «1.38053, =5 | ~1.52817T, 4 | -5.B2055, ‘4
o4 | T.71962, -1 | 400282, -1 | L.TYRS, -1 | s.eelle, -2 | 1.01178, -£ 2.36621, -3 | ~1.8087Z, =3 | ~2.02364, -3 | =1.25888, =3 | =B.8515T, i | -2.54650, -4
A8 | T.636T1, -1 | 3.82264, -1 [ 1.60368, -1 | G.4TéE2, -2 | l.270%8, -2 1.50068, -4 | -2.83%49, -3 [-1.77881, =5 | -1.02127, +3 | e3.5825F, 4 |-1,12718, -4
48 | T7.35388, -1 | 3.64889, -1 | 1.44304, =1 [ 443684, <2 | 7.87i04, -8: § -R.12640, -3 | -2.90284, -3 f-1.T4815, -5 | -T.E2680, 4 ( «1 7555, 4 | -2.481¥, B
=50 | 7.4T2E8, -1 | S.48202, -1 | l.2med, -1 | 363204, -R | 5.858T0, -3 | ~4.82362, -3 | -2.88488, -3 |-1.42891, -5 | ~d.9GMAE, & | «2,628 2, a6 | +.0meEt, &
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TABLE 3
-
m | rm | x40 | 20 ! ' ! r '
T T T

. _1/3 -5/2 —5/2 —7/3 LEPYP X0 ¥ 13/3(T) Fapral™) | Toaqa(™) | Pagpal™) | Taiya
@[ 1.00000, O 1.00000, O | 1.00000, O] 1.00000, o0 1l,00000, ©| 1.00000, Q[ 1.00000, 0| 1.00000, © 1.00000, © | 1.00000, ©| $.00000, ©
10| 1l.058%9, 0} 1.12085, ©| 1.4ltry, 0| 172808, O 2,06119, O 2.400M, O 2,790, ol 3.23017, o0 3z.72388, ©| 4.28471, O 492408, O
A2 | l.0s%28, 0| 1amzl, 0| 149211, 0| 1.90884, o 2.,3859, O 2.9%8%, 0] 3.68E, o| 4.53940, ©| G.22982, O | ¢€.28099, O| 7.52881, O
J4 | 1.0t 0| 1.3814, O | 1.65%88, O 2.07788, O | 2,748, O | OB.52568, O] 4.51952, o| bc.Tee8, o T.2899Y, O o.107%4, o 1l.08s88, 1
26 | 1l.06618, 0| l.14080, O | l.67eBY, O =2.K387, Q| 2.88480, O B8.81870, 0| B5.01470, o| &.4263, ©| B.49624, O l.oPass, 1| Ll.4aT3s, 1
216 | i.09082, 0| 1.1418%, o | 1.69%68, O =2,21920, O | 3.032¢4, O 4.20061, O| G5.50501, o| v.54428, o ©o.76040, O 1.2028y, 1| L.OTES, 1
«166| l.09289, 0| 14201, o0 | 1.60888, 0| 2.24885, O | 3.10088, O | 4.Z8¥, O] B.TITRL, o v.varos, o 1l.03082, 1| 1.30081, 1| 1l.se8de, 1
7 | 1.09643, 0| \.a4219, o 1L.61875, O =2,27577, O | 32.16314, O | 4.35828, O | B.060R5, o| a.1167s, o 21.10004, 1| 1.48961, 1| %0107, 1
76| 1.09788, o0 | 1.14238, O | l.6238, o 2.20984, © | 322029, O 4.4761, O ¢.18844, o| a&ar1288, ©| 21.6880, 1| 1.88%7, 1| 238TRR, 1
«18 | 1.10048, 0| 114199, Q| l.62910, O @2.32087, O | 3.rTHAB, O | 4.BTEGE, O | &.38782, ol #s.e0060, o 1.2m425, L | 1.67118, 1| 2.298%9, 1
«186| 1.,10896, O | l.l4282, O | 1.85258, O 223878, O | 3.562¢, O | 4.64849, O e&.52476, o| v.osess, o 1.28235, 1| 1.74878, 1| zutaTTE, 12
«19 | 1.10646, O | 1.14108, O | 1.63487, O] =2.363%28, O 3.36182, ©O| 4.THBG2, O | 6.66M3, o| 9.530es, o 21.30229, 1| 1.81288, 1| 2.,81778, 1
J196| 1.10795, O | l.140%6, O | 1.68005, O 2,38430, O | 3,28082, O | &T9766, ©[ &.77089, o| 9.61385, o[ 1.3219v, 1| 1.85008, 1| 2.88765, 1
220 1 1.12059, O | 1.159%49, O | 1.64000, O | 237172, O | 3.40004, O | 4.B27TM, 0| 8.84188, o| 9.62282, 0| 21.34016, 1L | 2.88%7, 1| 2.sl8ss, 1
o) | L1626, O | 1.15724, O | 1.6%342, O 237625, O | S.4ll69, O | 4.08825, O 6,357, o| 9.e0528, O 1.33853, L | 1.84450, 1| 2.52419, L
22 | 1,12006, O | 1.13459, O | 1.88210, O | 2.382e3, O | 5.38154, O | 4.78048, O | 6.67188, 0| 9.16810, 0| DL.24449, 1 | 1.85504, 1| 2.1405, 1
o3 | 1.12481, O | 1.13096, O | l.62166, O 2,381}, O | 3.30M6, 0| 450764, O | 8.2497, o| B.es288, O 1.06268, L | l.fvoRw, 1| Ll.40e7s, 1
o | 2.12060, O | 112695, O | 1.50638, O | =2.28818, - 0 | 3,08493, O | 4.296, O | B.6BTES, o| e.men0, 0| T.40095, O | 6.46598, O] Ll.kees, @
«25 | 1.18424, O | 132244, O | 1.58603, O | =2.2z417, O | s,01181, O | 3.86686, O | 4.66TRL, o| 4.60097, o 2,81933, o |~-2,55118, O | -l.zaT29, 1
«26 | 1.1387M, O | 1.21743, O | 1.56018, O | 2.4375, © | g2,78818, O | 3.20162, O | &.2661Y, 0] 1l.7T3352, O -3.08289, © | -l.4e818, 1 | -3.65195, 1
21 | 1.14383, 0 | 1.11186, 0 | 1.53092, O | 2.04504, O | 2.50803, 0 2.89528, O | 1.80707, 0 | =l.88250, O | -1,08008, 1 | -3,00024, 1 | =8.55187, 1
028 | L4790, O | 1.10606, O | 1.4973, O | 1.928M, O | z.07368, O | 1.7%4870, O | -3.88633, -1 | =5.28854, O | -L.B0180, 1 | -4.86017, 1 | -l.0Ms8, 2
220 | MW1821), 0 | A.08878, O ; l.s9¥3, O | 1.79545, O | 1,78835, O | B.5835, -1 | ~3.62193, 0| ~1,14805, 1| -3.08982, 1 | «7.,01848, 1 | ~l.47011, 2
+30 | Ll.lbgas, O | 1.00204, O | 141812, O | 2,54535, O | l.3789, O | -3.771%64, 1 | -6.7BG6S, o | -1.72070, 1| ~#.2876L, 1 | =9 ., 1| -2.928m9, 2
«22 | 1.18500, 0 i 1.07B81, O | 1.52381, O | 1,26780, O | &.2)F87, ~1 | ~5.02438, O | ~1.15888, 1 | -3.07618, 1| ~7.02522, 1 | -l.46595, 2 | ~2.05312, 2
oB | 1,735, O | 2.08296, O | 1.21608, O | 8.95074, L | -8.7844t, =1 | -8.09800, O | ~1.98550, 1| ~4.66%05, 1 | -e.8m801, 1 | ~1.96922, 2 | -3.63061, 2
<38 | 1,18145, O | 1.04620, O | 1.00882, O | 4.40P08, -1 | =2.21429, O | -9.4514F, 0 | ~2.80688, 1| -6.,00882, 1 | -1.22174, 2 | -Z.28Y98, 2 | -3.ABS25, 2
«38 | L.aeezs, o | 102881, o0 | 9.67876, -1 | ~E.00BGE, -2 | -5.83756, O | =l.®%%s1, 1 | -3.321p1, 1| «7,21287, 1| -1.37846, 2 | -2.29905, 2 | -2.153T1, 2
A0 | 1,20706, O | 1.01084, O | 8,31825, -1 | ~5.6548Y, <=1 | -5.08175, O | -1.83C38, 1 | ~3.81243, 1| -T.o8885, 1| -1.56028, 2 |-l:8me09, 2 | ~l.ZR867, 2
42 | L.EOM86, O | U.P1P68, -1 | 8.80872, -1 | -1.08609, O | -6.51410, O | ~l.91396, 1 [ ~4.3R731, 1 | -7.99887, 1 | -l.desl0, 2 |-8.63567, 1 | l.70B87, 2
o | 1.21187, O | 9,72088, -1 | S.ddB4?, -1 | <1.6192%, O | <7.84%57, O | =2.14504, 1 | -a.4B25], 1 | “T.17273, 1 | -6.87381, 1 | 46.63411, 1| B.8TL07, 2
48 | 1,21899, O | 9.53707, -1 | 3.96639, -1 | -2.15087, O | -5.01412, O | ~Z.29447, 1 | =4.3120, 1| -5.39606, 1 | 4.00007, -1 | Z.59%1%, 2 | P.B4ll1, 2
8 | 1,22591, O | U.34408, -1 | 2.53288, L | w2.61205, O | -9.96814, O | =.230W, 1 | -3.79201, 1 |.-2.87207, 1| 8.74701, L | 4.cM48?, 2 | L.B642F, B
S50 | 1.28268, O | 9.1514%, -1 | L0727, =l | -5.06472, O | -1.08548, 1| =2.2m201, 1 | -2.91157, 1| -8.7285 , 0 | 1.88516, 2 | s.5208t, Z | 1l.6867, 3
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TABLL 4
(0 {r ¥ T ¥ T 7 F T ¥ 1) T I T F T T {r}

r | s Toad™) | Lol | Lplm) | Byt Fap™ | D Loa™ | L™ | Lgpl™ | Typ

0| 2.00000, o 1.00000, o[ 1,00000, O 1.00000, O©| 1.,00000, ©| 1.00000, ©| 1,00000, © | 1.00000, © | 1.00000, © | 1.00000, © 1.,00000, ©
=10 | 1.022E3, 0| 9.50632, =1 | 8.6665, =1| Y.00544, L | 8.TTES, -1 5.04750, =1 B.2OTES, -1 | 4.85218, -1 | 3.97428, -1 3.46662, -1 3.02176, =1
.12 | 1.02768, 0| S.52135, -1 | 8.38224, 1| T.24388, -1 g.203r1, -1 | BG.28008, ~1| 4.96602, -1 | E,799%8, -1 | Z.Plsls, -1 | Z2.71383, -1 2.20984, =1
«l4 | 1.05281, O | G5.45406, =1 | 8.10615, -1 6.808T4, -1 | §.66817, «~1 | 4.8687E, =1 | 3I.B3576, =1 | 3.04005, =1 | 2.56617T, -1 | 2.095Te, -1 1.70810, =1
=15 | 1.08661, O | B.83048, 1L | T7.96756, <~1| O6.58561, =1 | 5.39175, =1 | 4$.37404, =1 | 3.53240, =1 | 2.84245, -1 | 2.28146, -1 | 1.82TTO, -1 1.46198,- =1
«16 | 1.03827, 0| 9.34427, -1 | 7.B2803, -1 6.38517, 1] $.,23552, <1 | 43973, -1 | Z.24641, 1 | 2.86517, -l | 2.02048, -1 | L.58316, -1 l.24604, -1
-166| 1.03887, 0| 9.32141, -} | Y.7681¢, ~1| @.27773, 1| b6.00888, -1 | B.EOT4S, -1 | 500098, -1 | 2.45385, -1 | 1.89860, -1 | 1.e7768, -1 1.14781, =1
21T | 104209, 0 9.208%8, -1 | T.88817, =1| 6.17278, 1 | 4.88093, -1 | 3.B25Y0, ~1 | 2.PT682, -1 | 2.%0725, ~1 | 1.7619¢, -1 | 1,39509, -1 1.,06566, -1
«175] 1.04252, O | 9.29620, 1 | T.51804, =1 | E6.08830, -1 | #4.75899, -1 | 3.68288, -1 | Z2.84T35, -1 | 2,18627, -1 | 1.0706%, - -1 | 1.2T415, -l 0.80383, -2
+16 | 1.04297, o | 9.26183, -1 | T.84TTT, 1| G.96432, -1 | d.B3466 ~1 | 3B.8867¢, -1 | Z2.72184, -1 | E.06TEL, -1 | 1.68aE0, =) | 1.208065, -1 8.86860, -2
D8l 1.04548, o | 9.22829, -1 | T.ATTSE, -)1| GE.00063, -1 | 4.51880, -1 | 3.aBaRE, .1 | 2.89%48, -1 | 1.98475, -1 | l.46383, -1 | 1.09238, 4} 8,18007, 2
+19 | 1.04891, O | 9.20457, -1 | ¥.406681, ~1| BE.TEVG4, -1 | 4.30418, -l | 3.31a®1, .1 | 2.408?, -1 | 1.84B68, -1 | 1.366T3, -1 | 1.00000, -1 | T.d2442, 2
-185| 1.04841, 0| 9.18068, -1 | T.88611, -1 | BE.58656, -1 | 4.27619, -1 | 3.19418, -1 | 2.%86%79, -3 | 1.94140, -1 | 1.27488, -1 | 9,30461, ¥ 8,76615, =2
<£0 | 1.04892, O | 9.15689, -1 | T.26628, -1 | G6.B8335, -1 d.1G972, -1 | 5.07585, -1 | B.26412, -1 | 1.64081, -1 | 1.,1093T, -1 | 8.58583, -2 8.1527T1, -2
21 | 1,06230, 0 | 9.10786, -1 | T.12817, =1 | <5.BB067, -1 | 3.95124, -l | 2.ma728, -1 | 2.04085, -1 | 1.45177, -1 { 1.02621, -1 | T.21522, & B.C61BB, =E
22 { 1,06614, O | 9.06888, -1 | &.98047, -1 | B5.2BO41, 1| 3.70870, -1 | e.e2e03, -1 | 1.84065, -1 | 1.27TY?8, -1 | 2,79060, -F | 6.02598, -2 4.10522, -2
«23 1 1,069%6, 0 | 9.00808, w1 | 6,83718, -1 | 4.90808, 1 | 3.49208, =l | 2.41470, -1 | 1.86304, -1 | 1,1181%, =1 | T.4TTTR, =2 | 4.08507, -Z 3.20142, -2
24 1.06288, [} 8.06604, i 8.083522, -1 4.TEEYL, -1 3.20136, -1 z.218689, -1 1.47768, =1 B.72075, =2 6.%0801, -2 4.07583, =T 2.60114, =2
25 | 1.06604, O | B.90498, -1 | 8.BaB6&, -1 | 4.58250, -1 | 3.07em2, 1| z2.02841, 1| 1,513, .1 | B,58878, -% | E.25580, -2 | 2.08409, -2 2.01863, -2
25 | 1.06860, O | 8.85220, -1 | G.40842, -1 | 4.36542, -1 | 287785, ~1 | 1.84708, -1 | 1.16240, =1 { 7.17818, ~2 | 4.32661, -B | Z.60403, % 1.85124, o2
27 | 1.07306, 0 B.T9633, -1 | 8,26752, <1 | 4.17949, 1 2.88448, ~1 1.6T478, -1 1.01879, -1 5,08188, ~2 | D.5063B, =2 2.,02218, -2 112740, -2
.28 | 1.07669, O | 0.7T4382, -1 | &8.11079, -~} | 3B.98).74, -1 | 2.49T4, -1 | 1.60315, ~1 | B.88888, -2 | B.09983, -B | E.7854T, -2 | L.62M2, -2 T.9es72, -3
»20 | 1.08042, - O 8.68762, -1 5.96314, -1 3,0082), -1 2,31685, =1 1.36818, -1 7.87415, -2 4.200B8, =2 £.16216, =B 111568, -2 £.29181, =3
«50 | 1.08425, O | 8.63120, -1 | 6.81582, -1 | 3J.82289, -1 | 2,13967, 1 | 1.20088, -1 | 4.eEE17, .2 | B.aa3m), -2 | 1.60520, =2 | T.50658, =3 B.16648, =3
«52 | 1.09221, 0 8.6145Y, -1 E.E1T3, -1 3.4M0, -1 1.80888, =1 9,410882, 2 4.89780, =2 2.00M86, -2 | T.2l412, % 2,6T258, =3 B.LOTE4, =4
«32 | 1.,20083, O | 8,39338, -1 | E.7T691, -1 | 2.PIZ82, ' -1 | 1.4%470, -1 | 7.0m881, -2 | 2.¢v227, -2 | 1.0M108, -2 | T.08990, -4 | -8.20885, -4 | -1l.316T0, -3
«36 | 1l.10964, O | 8.26728, -1 | 4.91116, -1 | 287170, -1 | 1.20628, -1 | 4.98611, -2 | L.68104, 2 | 5.19886, -5 | ~2.T8023, 3 | ~2.80870, -3 | ~1.96%31, =3
«38 | 31.11898, 0 | 8.13792, -1 | %.80288, -1 Z.R4064, -1 | P.40421, -2 | B.1YTTl, -2 | 6.03759, ~3 | -2.0T4C4, ~3 | «8.BTEST, «F | =3.14716, <=3 | ~2.,00857, =3
~%0 | 1l.12902, O | 7v.898850, -1 | 4.29084, =1 | 1.81964, -1 | G.96048, 2 | 1.85772, -2 | -1.08761, 3 | ~B.48776, 2 | -9.0%991, -3 | =5,19052, =3 | ~1l.TAGEB, -3
2 [ l.159v2, o | 7.85882, =1 | 3.97460, -1 | 1.80083, .1 | 4.TE8BS, -2 | 3.90022, -5 | -V.84725, -3 | «7,20618, 3 | «1,068A1, =2 | =2.79B84, -3 | -1.26803, =3
o84 | 1.18112, © | 770426, 1 | 3.06450, -1 | 1.30978, -1 | 2,76348, -2 | =5.38482, -3 | ~1.181El, ~E | ~7,88178, a5 | -1.18892, -2 | -2.16148, 3 | ~T.TA904, 4
o6 | 1.18538, O | 7.54598, ~1 | 35.52065, -1 | 21.08146, 1 | 9.8782, -3 | ~1.44837, -2 | -2.41468, -2 | -7.B2873, -5 | -1.32385, <~ | =l.44628, -3 | -D.7Ge4r, =4
o8 | 1.17858, O | T.57924, -1 | 2.99088, -1 | T.44810, -2 | ~-5.72230, =3 | =2,3834, 2 | «1,60977, B | -B.43288, -3 | -l.45087, B | ~T.57447, -4 | HL.005tt, -5
«£0 | 1.2007, 0 | 7.20812, -1 | Z2.86448, -1 | 4.80825, -2 | «1,01807, -2 | -R.4E214, <2 | -1.49089, -2 | -4.83756, & |-1l.714M1, -B | =l.57202, -4 245801, -4
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TABLE B .
F F T F r 5 F 7 7 r ¥

T LEVPRY LIPYPARY) £ g/a(m) I o/5(7) ¥ o3l Fyaza0) LEETARY E 1672t | Fygpat™) g™ | Egt

U7 1.00000, " © | 1,00000, O | 1.00000, O | 1.00008, G 1.00000, 0/ 1,00000, © | 1.00000, O | 1.,00000, ©O | 1.00000, © | L.00000, DO [ 1.00000, ©
-10 | 8.00892, -1 | 1.67186, O | 2.116%, O | 251348, O | 2.52885, ©O| 3.578TT. 0 | 3.8TIST. O | 4.44205, O | E.082TH, 0 5.81560, O | B.84072, O
12 | 7.67300, -1 | L.42vs, O | 2.3¢sn%, 0 | 2.95210, O | 3.028mp, 0| 440M0, € | 5.31483, O | €.37910, 0 | T.68149, o | 9.10875, O | 1.08544, 3
4 | TLIBEEY, -1 | 1.79165, O | 2.64879, O | 3.38068, O | 4.E791L, O] &.60al3, O | 7.11984, O | B.gezes, O | 1.15188, 1 | l.anep¥, 1 | L.rrras, 1
16 | 6.89180, -1 { 1.80M0, O | Z.68622, O | 560260, O | dIAHT, 0 6.20964, O | 8.11157, O | 1.05082, 1 | 1.3566), 1 | l.74891, 1 | 2.za182, )
«d6 | E.60665, -1 | 1.61762, 0 | 270976, O | 7807, O | B.0L, 0| #.pese, O | 9.11878, O | 1.20984, 1 | 1.58828, 1 | 21004, 1 | 2.87621, 1
. 6.03760, -1 | 1,A2041, 0 | 2.Ta308, O | s.eexd2, O | s.26675, O T.T2087, O | 9.61556, O ) 1.28842, 1 | 1.72%61, 1 | Z.20849, 1 | 3.06682, 1
A7 | Gudl78l, -1 | 1.82282, © | 2.7P060, O | 3.810888, O | B.4218%, O] Y.aposs, O | 1.00958, 1| 1.38TS5, 1 | 1.54660, 1 | P.aese, 1 | F.mvee, 1
ITB [ 6420536, -1 1.82177, 0 | 2.79800, [4] 5.98888, [+] 556612, (1] T.60438, 4] 1.08489, 1 1.44183, 1 1.98854, 1 £ 87380, 1 3.65128, 1
<18 | 6.7410, -1 | 1.B2024, O | 281720, o0 | 4.08008, © | S.emam, 0| T.e2se1, O | l.omse2, 1| 1.61181, 1 | 2.0706, 1 | 2.memss, 1 | 500136, 1
«185 | 6.0807T40 1 | 1.81720, O | A.83434, O | 4.10281, O | 580852, O #2808, O | 1.13384, L | 1.57537, 1 | 2.avved, 1 | 3.c0ss6, 1 | 4.14478, 1
10 | 5.02628, -1 | 1.61267, O | B.B4724, O | 44885, O | s.e0mE, ©| s.p2ove, © | 1.18552, 1| Le2sol, 1 | z.2s189, 1 | 3.1sees, 1 | A.sdsse, 1
o106 | 5.80060, -1 | 1.80662, O | 2.8B674, O | 4.8023, O | 5.980BZ, 0| Busedl, O | 1.19085, 1 | 1.66660, 1 | 2.52540, 1 | B.2sse0, 1 | 4.40025, 1
20 | 5.6T3Y8, -1 | 1.79904, O | 2.86885, O | 4.20322, O 8.03384, O) 55441, O | 1l.20708, 1| 1.6024), 1 | 2.38284, 1 | 328588, 1] 4.50480, 1
o2l | S.41663, .1 | 1.77628, O | 2.88509, O | 4.21425, O | 6.085%4, Of 8.61069, O | 1.21056, 1 | l.8B7M, 1 | 2.33425, 1 | B.20112, 1 | 4.3619d, 1
+22 [ B.1B436, -1 | 1.75580, O | 2.e2s24, O | 4.17883, O | G.9@082, O 8.4l006, O | 1.06641, 1| 1.5ms2s, 1 | Z.Bye, 1 | 2.tvee, 1| s.e2el2, 1
22 | 4.80698, -1 | 1.72100, © | 2.77Y8%, © | 4.0%623, O | B.YeORl, O 7.pl48), O | 1.05626, 1| 1.26985, 1 | 1.88%90, L | 1.95177, 1 | l.B2495, 1
<24 | 400428, -1 | 166228, O | 2.70881, O | S.9886, O | E.36885, O 7.07029, © | .56, O | S.7ecze, 1 | e.60248, 0 | s.ava2s, o | -l.ozome, 1
-2 | 4.33805, -1 | 1,63v07, O | 2.61182, O | 3.8835, O | 4.64188, O p.mevee, O | €.02828, © | 4.4125, O |-2.40221, O [-l.8u2l, 1 |-.2e08, 1
«20 | 4.06202, -1 | 1.50626, O | B.gue2, o | 3.5a:3, O | 40768, o) 4asma, 0 | 2.2s2, o0 ) -3.83181, O |-1.8M85, L | ~b.uSees, 1 | -1.22080, ¢
«E7 | 3.76200, -1 | l.s26m, O | R.34674, O | 3.0028, O | 3.18880, O 1.9pae4, O | -2.48M09, © | ~1.37802, 1 | -3.8v6E4, L | ~8.99708, 1 | -l.meve,
28 ) 346871, -1 | la6la4, o | 217265, O | 2.54232, O | 2.0090, 0| ~v.eesa), -1 | ~-8.504T2, O | ~2.85047, - 1 | -6.56540, L | ~1.40799, 2 | -2.8TEES, 2
'8 ) 318291, -1 | 126805, O | 1,9m129, O | l.99226, © | 6.11218, 1| —4.04B21, O | -1.88006, 1 | ~4.29351, 1 | #R.59151, 1 | 2,0198Y, B | —4.02893, 2
-0 | 2.86352, -1 | 1,308, O | L.¥4los, O | 1.36368, O [-1.00081, O| -7.51965, O | ~2.441%5, 1 | -s.o0988, 1 | -1.52492, 2 | ~2,72472, f | -6.52662, 2
=32 | 2.21268, -1 [ l.2015, O | 1.19021, O | -2,14214, -1 | B.OGSTL, 0| -1,74800, L | -4.56801, 1 | -l.04267, 2 | -2.19261, 2 | ~e.3121, P | -9.16299, - 2
+3 { L.B40%0, .1 [ 9.,18760, -1 [ 5,23002, -1 |«2,17470, O |-1.00308, 1| -zZ.gases, 1 | -T.1a962, 1| -l.5e282, 2 | -3.1s041, 2 | -s.9mv82, 2 | -l.ossav, 3
<36 | B.356413, -2 | G.TYM47, -1 | -2.90008, ~1 | —4.63649, O | -1.821T0, 1| gm0, 1 | -l.00772, 2 | -2.11106, 2 | -4.15818, 2 | ~T.1es2s, 2 | -l.132%%, 3
<38 | 9,23181, -8 | A,082656, =1 | -l.23464, 0 | ~7.20208, 0 | -2.¥2208, 1| =BJ54548, 1 | -1.32008, 2 | -2.60430, 2 | =4 83643, 2 | -T.18206, 2 | -8,T6830, 2
A0 | -B,.90858, -2 B.52728, -2 | 2,318, 0 | ~l.04485, 1 | -3.09675, L | -T.53560, 1 | »1.60694, 2 | ~2.93013, 2 | -4.57159, 2 | wB.30341, 2 | -1.%3821, g
42 | ~1.51882, -1 | ~2.48582, ~1 | ~3.631%6, O | ~1.20444, 1 | =3.91966, 1| -p.0sap2, 1 | -1.79335, 2 | -2.34769, 2 | =3.63661, 2 | =7.8174 1, 1 1.25182, 3
43 | -2.39785, -1 | ~8.20646, -1 | -4,88782, O | -LTTA0L, 1 | -4.76805, 1] -l.oszss, 2 | -1.8YM9, 2 | -2.51383, 2 | -l.19912, 2 | S.9217, 2| B.18928, 3
B | -3,5225, -1 [-l.05064, O |-6.38142, 0 | -2.27681, 1 |-§.66041, 1| -l.1sees, 2 | -1.TT439, 2 | -l.aozo8, 2 |+2.6:089, 2 | 1.v2553, 3 | G.a2020, 3
40 | -4.32895, -1 | ~1.51424, O | ~8.00840, O | ~2.ES318, 1 |-~8.31288, 1| -1.18Y6), 2 | -l.431Y6, 2 | 42.BL182, 1 | T.95M9T, B | 2.95776, 3 | 7.50887, 3
B0 | ~B.30875, -} | =2.02198, 0 [ -9.76284, 0 | ~3.01257, 1 | -5.84635, 1| ~l.l1l4e8, 2 | -7.06516, 1 | 2.56788, 2 | Z.43621, 5| 4.l6445, 3| B.8530T, 3
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TARLL 6
= " - - -~ - -~ - -
F T T P F T F T) T (1) ¥ T

T E1/3.1( ) E3/21.1(') "'5/2,1( ) 27/2.1(7) !9/3.1“) 311/3,1(7) —13/3.1(” I15/2,1( ) —17/8.1( —18/2. -81/2,1( )
01 L0000, 0 | 1l.00000, O | 1.00000, 0 | 1.00000, O | 1.00000, ©| 1.00000, O] 31.00000, O 1.00000, © | 1.00000, © | 1.00000, O] 1.00000, O
+10 | 1,20005, 0 | 113180, O | 1.082586, O | 9.2783, ~1 | B.26807, .1 | 7.30312, 1| G.eaVeR, -1 5,86880, -1 i 4.96434, -1 | 4.34327, <1 | 3.80406, =1
»12 [ 1.24B%0, O | 1.16243," © | 1.088%3¢, 0 | 9.12019, -1 | v.s08mr, .3,| 6.8077R, -1 5.BBY0E, 1| 4.978s0, -1 1 4.25697, -1 | s.58815, -1 | 2.05138, 1
14 | 1.25993, Q 1.195607, 0 1.04T41, 0 | 8,%6412, -1 | T.5888, -1 6.32718, -1 | s5.26848, -1 | 4.380%0, -1 5.69662, -1 | 2.04888, -1 2.41942, -1
15  1.38712, 0 | 1.212L), O | 1.06151, O | 8.884v5, i | 7,58446, -3} | 6.0926%, -1 4.58469, 1| 4.06738, -1 | Z.28963, -1 | 2.6590F, 1| R.14400, =1
-l Lle 35628, 0 1.22867, 0 1.06530, [} 8.80409, =1 T.22402, 1 6.88169, -1 4.71913, =1 5.7T47, -2 300088, <1 2.59011, -1 1.89526, -1
-166) l.36973, 0 | 1.25%6, O | 1.06723, O | B8.76471, -1 | 7,138%6, 1 | 6.7ATE4, -1 | 4,68940, -1 | 3.84223, -1 | 2.8TT16, -1 | f.28429, ~1| 1.v7e63, -1
17 | 1.38445, O | 124777, - O | L.OGSEY, O | 8.T2422, -1 | 7.08402, -1 | b.65443, -1 |. 440171, -2 | 3.61055, -1 | 2.74s08. -1 | E.14zes. -1 | 1.6566, =1
16| 180844, O | L.26702, 0 | l.0cl4, 0 | B.58363, -1 | £.96919, ~1 | B.52226, -1 | 4.35002, -1 | 3.30145, -1 | 2.623l0, -1 | 2.02685, -1 | 1.56963, --1
+18 | 1,41470, O | 1.,Z6842, O | 1,06355, O | B.od262, -1 | £.85447, <1 | 6.4210¢, -} 4.21286, -1 | 3.26665, -1 | B.50R11, L | 1.91438, -} { 1.45927, =1
«100 1.45024, O | L.Z7897, O | 1.06565, O | 8.80160, -1 | g.¥ppa7, -1 | 5.300%7, -l | e.0%088, -1 3.15285, -1 | 2.56608, -1 | 1.%07c3, -l{ 1.56370, -1
«19 1,4346807, 4] 1.28587, [+] 1.06778, 0 8.66017, w1 B.71858, -1 5.10144, =1 3.97008, -1 3.015%08, -1 2.271179, -1 1.70414, -1 1,27282, =1
=196 | “L.48220, 0 1.20682, [+ 108904, 0 8.51851, -1 6.83101, 1 | 5.08306, =1 385885, L 2.88622, -1 2.18280, -1 1.60687, =1 1,18671, -1
«20 | 1,47E83, 0 [ 1.2086%, 0 | 1L,OT215, O | B.47834, -1 | BuheSTB, <1 | 4.97565, -1 | S5.7T5%47, -1 2.T3230, -1 | 2.06860, -1 | 1.61118, -1 | 2.l0807, -1
+£1 | L.ol24s, 0 | 1.B2603, 0 | 1.07668, O | 8.30260, -1 | 6.5785%, -1 | 4.78863, -1 | s.61ITE, .1 | 256308, -1 | 1.M102, -1 | L.55460, -1 | 6.4, -2
22 1.647E5, Q 1.54720, 0 1.08118, 0 8.30T#4, -1 6,21092, 1 4.56548, ~1 5.29%01, -1 258802, -1 1.88850, =1 117311, «~1 8,19421, -2
25 | 1.684G5, 0 | 156508, O | 1.08878, O | B.22188, -1 | &.04373, -1 | 4.3112, -1 5.08548, -1 | 2,15789, -1 | 1.4P489, -1 | 1,02812, -} | 6.99108, -2
«24 | L2200, O | l.27, O | 1.08066, O [ B.1s421, -1 | 587704, -1 | a.16083, -1 | 2.8808T, -1 1.9M138, 1 | 1.33529, -1 | A&.92e18, -2 | G5.92827, =2
26 | l.66150, O | 1.41512, © | 1.094%, O | 8.04608, -1 | 5,7085, -1 3.96401, -1 | 2.68632, -1 | L.Y9604, <1 | 1l.1s402, -1 | T.T1Te@, -2 | 4.9T6?Y, -2
26 | 1.M262, 0 | 143880, O | 110044, 0 | T.95682, -1 | 5.54618, =) | X.7812S, -1 | 249754, 1 | 1.626893, -1 | 1.0662%, -1 | G.6270T, <2 | 4.04415, -2
.27 1. TAB45, a l.dsd43, 0 1,10657, 9 T.00888, -1 5.38004, =1 3.57241, -1 2.31663, -1 14742, -1 9.10544, -2 5.64601, -2 B.41430, =R
«28 | l.700i1, 0 | 1.4%043, O | L.11084, 0 | 7.97629, -1 | B.2ABMZ, -1 | B.567a7, <1 | 2.14%10, -1 | 1.22685, -1 | m.0eeds, =2 | 4.vesaT. -2 | Z.77ees, -2
«29 | 15370, 0 | 161788, O | L1164, Q' | 7.662%6, -1 | 5.06L186, -1 [ 5.20845, -1 | 1.97868, -1 | l.aemsT, -1 s.96218, -2 | 3.smaas, -2 | 2.22880, -2
#30 | 1.88582, 0 1. 54584, 0 | 11479, 0 7.60804, -1 | 4.88735, 1 5.02958, -1 1.81731, -1 1.05823, -1 | b5.98920, ~£ 5.20200, -2 1.7p808, -2
5% | 1.9%018, 0 | 1.50452, O | 1,188%4, O | ¥.30788, -~} | e.66268, -1 | 2.68712, -1 1.61691, «1 | B,.25283, -2 | 4.50385, ~% | 2.}462, -2 | 1.,00925, -2
.34 | 210288, O | l.05045, 0 | L.14Bse, O | T.2013%, ) | 4.25061, -1 | Z.3e0R2, -1 Ll.24744, -1 | G.24100, 2 | 2.92387, -2 | L.Z7.44, -2 | 4.B8832, 3°
-36 | 223762, O | L73YML, 0 | 1.15860, O | 6,99020, -1 | 5.91914, -1 | 2,06064, -1 | L.00200, -1 | 4.62T0B, <2 | 1.84272, -2 | 6.21080, -3 | 1.o9198, -%
-38 | E.asEl, O | L.ALz88, 0 | L7228, 0 { 6.7R008, -1 | 60128, -1 | 1.75873, -1 | T.81778, -2 3.08881, -2 | 9.06701, -3 | 1.B1686, 3| -~T.34M, 4
40 | 2.51645, 0 | L9502, O | L.18e¢1, O | 6.576M, -1 | 528608, -1 | 1.4v924, -1 | 5.8G94L, -2 | l.eveeES. -2 | B.EOBL0. -2 -1,13327, -3 | ~1.80816, B
A2 2.,68480, 0 1,68478, [} 1.20285, o B.35378, =1 R.OTST4, -1 1.21838, -1 413837, - 9.35188, -3 | -9,57188, -4 | -2,88047, 3 | ~2.37552, -3
44 | 2,67173, O | 208328, O | 1.R1931, O [ G.ISTE, 1 | 286441, -1 | D.7ARYS, -2 | 2.82983, -2 | 1.80997, -3 | -5.96479, -5 | -B.a0243, -3 | -£.21080, o%
46 | 3.08085, O | 2.19185, O | 1.257e, O | 5.83518, -1 | 2.388%5, ) | T.aTiEL, -2 1.36070, -2 | -5.82048, -3 | <5.7T1341, =5 | ~5.77p45, =5 | =1.85820, -3
A8 | 8,8157, O | 28208, O | 1.2B678, O | 5.80715, ~1 | 2.064¢, ~1 | 5.5729Y, -2 | 2.89598, -3 | -7.80648, -3 | ~8.46357, -5 | -3.41828, -3 | ~1.3790, -3
20 | 3.%088, O f Rd0es, O | L2779, O | 6.318%, -1 | 1.760l, -1 | S.4msB, -z [-5.g3216, -3 | -1.02810, -2 [ -6.4LB4T, -3 | -2.78580, -3 | ~6.25008, oo
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TABLE 7

7 {r) 7 (r) F T y y ¥ r 7 w7 r T
r | Zassa “s/2,1 X gt !_7/311") Eore '™ | Eazaal™ | Baspan(™) | Iappeal® Earan'™ | Lagzanl™| Langa o7
0 | 1.00000, 0 | 1,00000, O | 1.60008, 0O | T.00000, T L.O0300, U 1.00000, 0 | L.00000, ¢ L0000y, O [ L0000, 0 [ 1.,00006, © 1.00000, 0
<10 | 1.15825, O | 4.42163, -1 | l.678%0, O | 2,77963, O ] 377824, O | 4.N787, O | b.66871, O | €.64404, © | 7.80322, 0 | 8.80868, O 7.87880, 0O
.12 1.15615, 0 5.23681, ~1 1.62003, [} 2.82519, 0 4.21370, 0 B.T4887, [+] 7.,48416, 0 8.41564, 0 | 1.17888, 1 1.42618, 1 1.511%8, 1
el4 | 1.23665, O | 2.02270, -1 | Ll.27601, O | 2.84275, O | 4.50255, O | e.24974, O | 8.88812, O | 1.20820, 1 | 1.83378, 1| 208370, 1| 2.08ma8, 1
B 1.25790, 0 | L.40831, ~1 | l.12h11, O] 2.45530, 0 | 4.16886, O 6.38881, O [ 9.22060, 0 | 1.27240, 1 | 1.82064, 1 | 2.39482, 1 2.6636%, 1
J16 | 1.27991, O | T.968450, -2 | 9.48388, -1 | 2.10926, O | E.A7620, O | €.0465, O | 9.14821, O | 1.52069, 1 | 1.96739, 1 | 2.688%5, 1| &.0zom1, 1
1166 )| 1.20020, O | 4.64087, -2 | 3.40844, -1 | 2.04485, O | B.67E04, © | F£.8e984, O | B.92705, O | 1.30447, 1 | 1.88170, 1 | 2.028%4, 1| z.24452, 1
17 [ 1.30269, O | 1.47568, -2 | T.49260, -1 | L.BY203, O | 3.4%610, O | g.57106, O | B.63624, O | 1.28352, 1 | l.B8801, 1| 2.60202, 1| sz.amo8s, 1
o175| 1.51439, O | -1,71897, -2 | €.e2898, -1 | 1.6811%, 0 { 3.15%63, 0.| B,26188, O | T.comM6, O | 119407, 1 | L.9g6az, 1 | 2.6085, 1| 3z.E%846, )
«18 | 1.52628, O | ~4.05430, -Z | 6.33227, 1 | 14TITT, O | 2.7e807, © | 4.6567T7, O | T.25647, O | l.092ar, 1 | l.n188Y, 3| 2.31429, 1| 388545, 1
+185( 1.55840, O | -B.1Y08B, -2 | 4.17812, ~1 | L.24383, O | 241085, © | 4.04768, O | 6.34140, O | P.B466l, O | 1.6617E, 1| 20096, 1| 3.880%0, 1
«20 | 1.36073, 0 | =l.14294, ~1 | R.97819, -1 | ®.97208, -1 | 1.9Te32, 0 3.38198, 0| B.202T9, O | 7.TTA85, O { l.ulls, 1} 1.60288, 1| 3.80108, 1
«195 | 1.36328, 0 | -l.4v062, -1 | 1.785016, =1 | 7.31847, <1 1.49182, 0 2.50383, O | 3.85803, O | 5.56283, O | 1.14M7, 1 | 9.,382T6, O z,40887, 1
«20 { 1.3780s, 0 | -1.80120, -1 | 4.38729, -2 | 4.47784, -1 | 9.56101, -1 1,656872, O | 2.22781, O | 2.68430, O | T.M362, O { 3.B50T, O 83,0704, 1
21 | 140234, O [ -B.46807, 1 | -2,2B049, 1 | <1,76609, ) | -2.TAYBl, -1 | -8.97668, -1 | -1.76508, O | -4.01080, ¢ O |-2.23266, O |.l.62844, 1 1.87888, 1
22 | l.4288l, O | -5.14870, =1 | ~G.10178, -1 | -B,TB13A, ~1 | =1.T1ln4, 0 | ~B.46162, 0 | =5.95760, 8 | =1,31405, 1 |=1.81473, 1 | =4.40577, 1| -l.088801, O
23 | 1l.45783, O | -5.83288, -1 [ -B.28818, -l | ~1.64450, O | -3.20308, O | -5.74685, O | «2.51049, 1 | -2.48641, 1 |-3.5261C, 1 | ~8.082864, 1| ~5.347r2, 1
+24 | 1.487%, | O | -4.B3008, ~1 | ~l.ABOBS, O | -2.4868VR, 0 | -5.,23640, O | -i.08m48, 1 | -2.08260, 1 | =5.86501, 1 {=B.STEOZ, 1 | «1.27Y083, 2 | -7.60288, 1
28 | Ll.BLYSR, O | -5.22828, ~1,| -1.,48003, O | ~3.39013, O | ~T.20248, O | .1,487:9, 1 [ -2.000v¢, 1 (-B.BOS23, 1 |-8.3X83Y, 1 |-R.834Y2, 2| -1.3v088, 2
«256 | 1.B4972, O | ~beBE778, -1 | -l.84493, O | ~4.3T445, 0 | -9,55201, O | -1.9ev3E, 1 | ~%.87483, 1 | ~T.36874, 1 [=1.12684, P | -2.45881, 2 | «2.0238%9, 2
27 | 1.58281, O | -6.08908, -1 | -2.21434, O | -5.41066, 0 | =1,10008, 1 | ~2.40128, 1 | -8.08664, 1 |-0,42100, 1 [-1.46658, 2 | -3.00074, 2| «5.00505, 2
«28 | 1.81728, O | -Y.4327T, -1 | -2.58768, O | -6.50814, O | -1,45905, 1 | -3.08328, 1 | ~s.07380, 1 | -1.181z8, 2 [-1.80988, 2 |-3.88820, 2 | ~4,02893, 2
23 | 1.86320, O | ~B.18940, ~1 | ~2.99286, O | -T.84661, O | -~1.75288, 1 | =3,e4m28, 1 | -7.28828, 1 | ~1.38764, 2 |~2.04706, 2 |4.BE810, 2 | -G 18194, 2
30 | 1.89068, O (-B.92089, -1 | ~3.40248, O | -8,83608, O | .2,00788, 1 | .4,28781, 1 | -E.47PYE, 1 [-1.81100, 2 |.2.45485, 2 | .-g.16m24, 2| -6.20134, 2
-52 | 1.T7064, O |=1,06433, O | ~4.26330, O | ~L,18196, L | -2.60870, L | -s.49723, 1 | -l.08269, 2 [ -2.011l1}, 2 |=2.85257, 2 |-5.BE220, 2 | -p.54089, 2
o84. 1 1.857T78, O | ~1,21888, ¢ | -b,14557, O | -1,58989, 1 | -5.20182, 1| -6.63000, 1 | ~L.27820, 2 | -2.25488, 2 [w2.T5616, 2 | =E.lB40R, 2 | -P.2362T, 2
+5 | 1.96335, O (-1.3U087, O | -6.08662, O | ~L.84923, 1 [ <3.76112, 1 | «7,80001, 1 | 138184, 2 | ~2.21508, 2 [=1.81791, B | -2.5092%, 2| -7.73738, 2
«358 2.06837, 0 | ~1.56980, 0 | ~7.01145, 0 | -1,90222, 1 [ -4.24450, 1 | -8,1B865, 1 | ~1.38408, 2 | -1.77036, 2 |*2.48745, 1 2.73928, % | «2.52084, 2
«40  2.27438, O | -1,76784, O | -T.97208, O | =2.12948, 1 | —4.50461, 1 ( =8.22140, 1 | ~1.34230, 2 | -8.08183, 1 | 3.62000, 2 | l.o%3%3, 3| +7.371008, 2
A2 | 2.30237, © | ~1,96648, O | -8.93768, O | ~2,38018, 1 | -4.78963, 1 | -7,83858, 1 | »7,02419, 1 | +7.8384], 1 | 8,40863, 2 | 2.07830, 3| 2.2:388, 3
o#d | 2.44482, O | -2.18400, O | -8,89718, O | -2.52288, 1 | ~4.74666, 1 | -5,87172, 1 | +z.2sgot, -1 | g.91840, 2 | 1,43078, 3] 486, 3| 4,023, 3
46 | 2.80378, ©O [~2,38481, O | -1.083828, 1| -2,84%08, 1 | «4.4187H, 1| -s.37787, 1| 9.Y0806, 1 | B5.B97EO, 2 | 2.0v404, 3 | 402088, E| s.eEmr2, 3
248 2.78201, 0 | -2,81982, 0 | =1.17488, 1| -2.89882, 1 | -B.04513, 1 | +3.44003, 0 | 2.20014, 2 B.87815, z | 2.87881, 5 | 430200, 5| TeamTY, 3
«50 | 2.90B0, 0 | -2,87114, O | -l.26069, 1 | -2.874E9, 1 | -2,68123, 1 B.23618, 1 | 3.08400, & | 1.15006, ¥ | 3.12808, & | 3.VY966, 5 | <v.32071, 3
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TABLE 8.~ !S; )(T) = £{1) T(v)—>£(r) T°(1) aoe (vu - E)
(o) (o) (o) (o) (o) {o) (o) (o) (o} (o) ()

r ) 7a(r) Iy/alv} Fyyplr) qyalt} To/a(7) Faln) Fis/at) | Fippelm) Tynsalt) | Xigpalt) X175
02 | W.BOAB, -1 | 9.64368, -1 | 9.40206, -1 | 9.16045, -1 | E,08010, 1 LYW, -1 | BwAeiaT, -1 | 8.20712, <=1 | B.00085, =1 | T.0T816, -1 | T.58217, =3
Od | REWTT, -1 | 9.33M7, -1 | 85,84017, -1 | 9,40069, -1 | T.e7ES8, 1| T.5T582, -1 | T.19360, -1 | 6.83058, -1 | &.48887, -1 | 6.16856, -1 | B.MTTT, -l
<08 | 978834, -1 | 9,0863, -1 | 8.34373, -1 | 7.TOMBl, -1 | 7.11388, .3 | @.Ge865, -1 | 6.06825, ~1 | B.80039, ~1 | 5.17118, =1 | 4.7Td85, -1 | 4.40801, 1
08 | 982797, .1 | 8.80976, .1 | V.09704, =1 | 7.0T889, .1 | 6.24549, b | 6.00008, -1 | 5.09878, -1 | 4.E70B3, ~1 | 4.0070L, <=1 | B3.67265, -1 | 3.20208, =)
W0 | 9.98016, =1 | 8.6Y001, -3 | T.526BR, -1 | €.53918, -1 | G.67804, b 95204, ~1 | 4.28830, -} | 3.7198%, -1 | B.23069, -1 | R.80688, -1 | 2.43661, =1
.12 L.05492, 0 | A&.8887T3, -1 | T.zeee4, -1 | 6,11796, -1 | B5.33480, =l 450850, -1 5.61865, -1 3.0363¢4, =1 2,54Td8, -1 | 2,13800, 1 L.T945, -1
J4 | L1RIE0, O | 9.08499, -1 | T.32M35, -1 | B.o2264, 1 | 4.78704, =1 386932, -1 | 302782, -1 | 2.eE7e4, -1 | 2.04331, -2 | 1.e6188, =L | 1.334Ps, -1
#15 | 1.21594, O | 9.82870, 1 | 7.82408, -1 | e.03528, -1 | 4.77864, w1 L.IBMT, -1 | 2.99e88, 1 | 2.37289, -1 | L.BTATL, -1 | 1.48767, -} | 1787, )
W16 | 1.45738, O | 1.11788, O | B.cup44, -1 | m.s7iB8, -1 | 5.16538, -1 3.89003, -1 | 8.08661, -1 [ 2,397650, -1 | 1l.86629, -1 | 1.43725, -} | 1.11160, =1
2188 17727, O | 1.567T7, O | 1.03845, O | 7.24285, -1 | 6.07460, 1 | 4.84892, -1 | 5.66881, -1 | B.TIT68, -1 | R.omE63, -1 | 1.58971, - | 1,23s85, -1
J17 | 208348, 0 | 2.26011, O | 1.68884, O | 1.20069, O | 9.67008, 1 7.298%, -1 | 5.50581, -1 | 4.183%2, <1 | B.13¢28, -1 | R2.564808, -1 | 1.T8438, 1
SLT5| 2.06247, 0 | 1l.83T81, O | 1,14624, O | 8.64307, -1 | 6.368%2, 1 474764, -1 | B.53887, -1 | 2.51%18, =1 | 1.96686, -1 | 1.468681, -1 | 1.00242, .-}
218 | 1.7EE9R2, o | 1.30%88, O | 9.00844, -1 | T,08567, -1 | 5.22637, =} 3.65008, <~} | 2.8a192, -1 | 2.09041, ~1 | l.pee88, -1 | 1,13801, -1 | B,%EEE, =2
»186| 1.B9244, O | 1.16361. O | B.4992¢, -1 | 6.20721, a1 | 453233, 17| 3S.30888, -1 | RB41401, -1 | 1.7e225, -1 | 1.28569, -1 | R.57840, -2 | B.S59T2, P
.19 | 1.47128, © | 106572, O | T.T1881, 1 | B.GE488, 1 | 4.04013, 1 L.98040, -1 | 2,11188, -1 | 1l.5zE82, -1 | 1.10182, ~1 | 7.05442. =2 | &.THOBS, w2
J98| 137854, O | 9.9087R, 1 | T.02764, -1 | B.l0889, -1 | B.66084, 1 2.62272, -l | 1.BTM, -1 | 1.343%, ~1 | 9.60888, -2 | B6.B6150, ~& | 4,B9904, -2
20 | 1.30380, o© | $.30366, -1 | @.s2938, 1 | 4.T2YEG, -1 | 8.36310, -1 230040, -1 | 1.88T96, =1 | 1.19662, <1 | B8.48pM, <Z | B.9B00C, =2 | 4.22288, -2
«21 | 2.18785, 0 | e.%61ls, -1 | B.evO2E, ~1 | 4,21061, -1 | £.BTLLS, =1 2.00077, =1 ] 1.38114, ~1 | 0.66218, -8 | 6.68886, -2 | 4.51870, -2 | B5.18687, =2
«22 | L.08852, O ]| T.e4386, 1 | B.ROR04, -1 | 5.84720, o] | 2.50508, w1 171108, -1 | 1.318889, -1 | 7.90865, -2 | ©.35058, -2 | B.80767, -2 | 2.42494, 2
«25 | Y.0267TE, © | 7.08881, -1 | £.B2631, -1 | E.2TETS, -1 | 2.20673, -1 1eAT785, -1 | 9.8434, -2 | &.52868, % | 4.3018%, -2 | 2.82288, -2 | l.8e0%4, =2
o | 9.6E405, -1 | S.53445, 1 | 4.43416, -1 | 2,96986, -1 | 1.96525, -1 1.28263, -1 | 6.34380, =2 | 5.36T38, -2 | B.46B389, -2 | 2.198B2, -2 | 1.3500T, ¢
«26 | 9,04389, -1 | 6,17022, -1 | 4,100%8, -1 | 2.68844, -1 | 1.74189, -1 111574, =1 { T,0TM5, ~2 | 4.43988, -2 | B.7EBTl, ~2 | 1.69T30, -2 . =2
»25 | B.88848, -1 | B.80715, -1 | %.6051), -1 | 246036, -1 | 1.B6388, 1 9.70898, ~2 | 5.98602, -2 | S.ee02¢, -2 | 8,16440, =2 | 1.B9264, -2 | T.62683, I
<27 | 8,270, -1 | 5.48%83, -1 | 3.B4la}, -1 | 2.23TTR, -1 | l.2BEsY, =1 B,43758, =~ | B.0dddd, ~2 | 2.98308, -2 | 1.70884, R | 9.66225, -5 | B.34348, -3
«28 | 7,90640, -1 | B.19158, -1 | 3.30282, -1 | 2.04584, -1 | 1.23M14, -1 1.31373, -2 | 4.22786, -2 | ®.5860, -2 | 1,31638, -2 | T.o40BE, -3 | 3Z.09048, -3
#290 | 7.5T088, -1 | 4.92479, -1 | 3.08461, -1 | Ll.BT310, -1 | 1,10837, - 8,51835, -2 | 3.6178L, -2 | 1.90052, - | 9.91462, -5 | 4.9B45F, -3 | 2,3887¢, =3
<30 | 7.26676, ! | 4.6T%80, -1 | ®2.58378, -1 | l.TIOMM, -1 | 9.02¢), -2 p.AR846, ~2 | 2,90000, <2 | 1.48748, -2 | T.25808, -3 | E.30818, -3 | 1.35l48, -3
-3t | 8.70181, -1 | 4.23%17, -1 | 2.62384, -1 | l.4P880, -1 | 7.68485, R 505380, -2 | L1.BO878, -2 | B.48827, -3 | G5.36TM, -3 | 1.0480K, -3 | 1,007, -3
34 | 6.20992, -1 | 3.08159, -1 | 2.20817, -1 | 1,18310, 41 | 6.92181, =2 2.95151, -8 | 1.1B088, ~2 | 4.07367, -3 | 9.27235, ~f | -2.06100, -4 | <4 VGES3, «d
+38 | 5.TES27, -1 | 3.50441, -1 | l.92838, -1 | 9.TR4E8, -2 | 4.aMiTR, <2 1.02567, ~2 | 6.10681, -3 | 1.16648, -3 | ~4,08B9EZ, -4 | =T.69940, -4 | oE.01676, =4
«38 | b5.56904, -1 | 3.180878, -1 | 1.67829, L | 7.00178, -2 | 3.2710%, -2 111127, -2 | 2.2620d, =3 | =0.50167, w4 | -1.20160, =B | -0.81436, -4 | ~6.300M8, -4
0 | 5.00058, -1 | 2.90193, -1 | l.aEs85, -1 | 632897, .2 | 2.29020, ~2 5,72187, ~5 | -2.88008, ~& | ~l.64658, =3 | ~1,44186, <5 | ~9.25138, 4 | ~5.00405, -4
o2 | 488139, ) | R.s3609, -1 | l.zezor, -1 | 4,0esps, -2 | 1.490833, -2 1.71125, =3 | =1.38062, -3 | ~2.48184, -3 | -1.38363, ~I | ~7.50448, -4 | -3.41783, -4
e ToA3428, -1 | 2,39199, -1 | 1.0TMB, -1 | 380810, -2 |- B.69TSl, <3| L.00215, =3 | -2.87083, 3 | -2.11722, -3 | -1.18695, ' -5 | =5.38TPT, & | -2,00086, -4
od8 | 4,04808, )L | 2.164TS, -1 | S.07389, 2 | 2,81887, -2 | 5.01581, <3| =2,00746, =¥ | -5.09884, 3 | -2.92284, -5 ] -0.10079, -4 | «3.34957, -4 | ~8.07TH8, -5
w48 | 3.76253, -1 | 1.96361, -1 | 6.T4088, -2 | 1,98803, -2 | 1.32100, 4 | «3,90218, <=3 ] -B.BE28Z, B | ~1.69628, 5 | -6.26881, —4 | -1.65424, -4 | -2,62289, -8
«B0 | 2.50230, ~1 | 1.76684, =1 | Gud5218, =2 | 1.29782, -2 | =2.E3621, o3| ~4.59763, -8 | ~2.78418, -3 | -1.22238, =5 | =2.71628, ~4 | -4.02791, -5 | W.1888§, B
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TABLE §.- 1(_:’(1) = £{7) ¥ "(f)—a-gr(v) (1) oos (vw + ‘z')
(o) o) ) £ glo) J(o) (o) J0) £{o) 7

v | Taptt | DapM | Tgp(m | Egum Lot | f5am | £3ae | £0am | # e | £ | Tast
0.02 | 1.0048b, 9 | 1.04081, © 1,06693, o | 1,09425, [ 1.12225, O 1.16084, 0 | 1l.13039, © | 1.23060, O 1.22157, [} 1.275%4, O | 1,30688, O
0.0¢ | 1,08584, O | 1.08887, © L.14843, 0 | 1.2078, [} 1.271585, O 1.33610, 0 | 1.41027, 0 | 1.48623, O 1.66416, 1] 1.84720, O | 173482, O
0.08 1.069536, o 1.14783, 4] 1.24x10, '] 1. 34626, o 1.45802, o 1.57804, o] 1.71010, 0 1.86806 , a 2,00577, 0 2,172288, [¢] 2.562B5, 0
0.08 | 1.08839, 0 | 1.22310, © 1,36443, 0 | ).p2217, 1] 1.60009, O 1.68435, 0 | 2.113%0, O | Z.35756, 0 2.63005, o 2.9%400, O | %.27310, O
0.10 | 1,14952, o | 1.32382, O 1,62410, 0 | 1.78483, [4 £,02073, O 2.32879, o | 2.61920, o0 | 3,06499, [+} 5.56224, 0 4,09028, O | #.70975, O
0,12 | 1,28522, 0 | l.4e2s, 0 | 1,76088, o | 2.08588, o 2.40545, 0 2,05148, 0 | 3.52882, O | 4.2044), O | 5.000e2, o 5.98906, O | Y.I12m1, 0
D14 1, 38750, 0 | 171889, 0 2.12373, 0 |.2.82744, 3} T.25062, 0 4.02181, 0 4.97546, O | &.15585, o 7.51555, 0 p.A21TR, 0 | 1.18586, 2
0.16 | 1.F35656, 0 | 1.93%44, 0 | 2.44889, o | 3.09343, 4} 3,90600, @ | 4.93445, 0 | 8.23139, o | 7Y.68086, O | 9.98913, 0 1.85505, 1 | 1.s8580, 1
0.16 | }.85839, 07| 2.20784, O | B.08669, 0 | 3.890EE, o 56.16585, O 6.87175, 0 | 8.61692, O | 1,11283, 1 143741, 1 1.85648, 1| 238717, 1
0.166 | 2.22115, o | 3.0%483, © | 5.98807, 0 | E.l8822, 1] 6.78355, O a.eap2, 0 | l.15%7, 1 | 1.51825, 1 1.08249, 1 2,69209, 1 | s.813, 1
017 | 1.97TT4, 0 | 2.62022, 0 | 3.47685, O | 4.80217, ] 6.09866, O 8.08400, 0 | 1.0M40, 1 | l.el09s, 1 1.86189, 1 2.49412, 1 | 5.30851, * 1
0a176| 1.5833), 0 | ).85658, O | R.48004, O | 3.35A70, 0 2,47881, 0 6.00685, O | 8,05608, O | 1.08088, 1 L4404, 1 1.94403, 1 | 2.60757, 1
0.13 | 1.1D687, Qo | 1.e8228, 0 | 2.1%684, O | 2.07957, 0 4.05782, 0 E.47065, 0 | 741085, 0 | 1.00410, 1 1,38014, 1 1.84229, 1 | z.48508, 1
0,186 | 1.08851, 0 | L4aRcas, 0 [ 2.03856, 0 | 2.78781, 0 5.81088, O 5420810, o | v.1615, - 0 | D.72085, 0| 1.32748, 1 1.012586, 1 | 2.473e82,' 1
0.10 | 1.01602, 0 | l.3e882, 0 | 9281, O | Z2.88822, 0 3.66014, O 5.05580, 0 | 8.92715, O | 9.52135, O | 1.30782, 1 1.79821, 1 | 2.4€285, 1
0.195] 9.568226, -1 | 1.33082, 0 | l.84861, O | 2.88847, © 3.54506, O | 4.%0170, 0 | 6.77185, O | 0.34345, O 1,28762, 1 1.77174, 1 | 243445, 1
0.20 $.12386, -1 | 1.27484, 0 1.7766%, G | B2.aTT27, 0 J. 4459, 0 4.77857, 0 | 8.81886, 0| v.l4080, 0 1,25974, 1 1.73152, 1 | 2.3T206, 1
0.2 8.40756, -1 | 1.18858, 0 | 1.66788, 0 | 2.,23714, o 3.26926, O 4.50281, 0 | B.242435, O | e.sslss, 0 1,18589, 1 1.57371, 1| 2.a0811, )
0422 | T.BT016, 1 | L.11880, 0 | Ll.nv419, 0 | 2,.803687, 0 3.08778. O | 4.15690, 0 | B.58606, O | 7.50028, 0| 9.00410, 0 | 1.2577, 1 | 1.63638, 1
0.2% 7.29%88, -1 | 1.06481, 0 148874, 0 2408458, o 2.81962, 0 3.78601, 0 | 4.88313, O | 6.,06000, 0 7.08475, 0 T SOE05, 0 | 700740, 'O
0,2¢ | 7.00080, ) | 9.96%%0, ~1 | 1.3989%, O | 1.913%2, o 2,636%0, O 3.21218, 0 | z.79%63, o0 | 3.9%831, 0| 2.08418, 0 | ~4.90089, -1 |~2,31482, Q
0,25 | S.60402, -1 | 9.47280, <1 | 11,3109, O | 1.mME12, 0 2.19831, O 2,52038, o | 2.%3208, O | l.l0708, 0 | -2.81475, 0 | ~1.12276, 1 |-2,91850, 1
0.20 6.34188, -1 8,.96085, -1 1,2:048, 0 1.E6128, 0 1.80u86, L) 1,88088, o 6.257e6, 0 | -2.48811, 0 | ~2.TT446, o | -2.51542, 1 | =5.56670, 1
0.2y | s.08p84, -1 | 8.50827, -1 | l.128Y, O | 1.35763, 0 1.8526T, O 6.80815, =1 | -2.45098, O | -£.88430, 0 | <1l.85750, 3 | -4.22m46, 1 [ =B.34T48, 1
0,28 | £.79147, -1 | B8.06895, -1 | 1,02838, O | 1.1%508, 0 8.,42650, -1 |-4.82808, -1 |-3.%6362, O | -1.P0282, 1 | -R.89043, 1 | -6.27818, 1 | -l,27228, 2
0.26 | E.B4476, -1 | Y.58687, -1 | 0.28825, -1 | B.eseE, o} 2.78121, -1 |-1,78620, 0 | -.77226, O | =L.7948, 1) -4.nat78, 1 | -8.68920, 1 | -L.70TTH, 2
0,20 | E.Xl244, -1 | T.1373, -1 | B.23800, -1 | 8,33R76, <1 |=-3.428%0, <1 |=3.16872, 0 | ~9.90920, O | ~2.44780, 1 | «5.406%8, 1 | -1.11282, 2 I =2.17818, H
0.22 | 4.88404, -1 | 8.28800, -1 | B5.04706, -1 | 7.TE70C, -2 |=1.72409, O |-6.2TH15, 0 | ~1.85448, 1 | ~3.90549, 1| -R.28018, 1 | -1.84088, 2 |-3.00L80, H
0.] | 4.48410, -) | 5.38827, -} | 5.74812, -1 | -5,34045, -1 |-B.256%1, 0 |-9.93145, 0 | ~2.5¢733, 1 | -B.43888, 1] -1,10483, 2 | -2,09452, 2 | -B.75029, 2
0.36 | 4,1381F, -} | 4.54018, -1 | 1.58204, -1 | -1,17027, 0 | =a.AT20T, 0 | =1.35081, 1 | ~2.21388, 1 | ~8.%0Tw0, 1| -1,%1R99, 2 | -2.32008, 2 |-3.731M, ?
0.78 3.80168, -1 | 35.711685, -1 | -1,01848, ~1 | -1.85848, 0 | =8.49930, O |[-1.m478, 1 | ~3.87788, 1 | «7.R0525, 1| -1.40283, 2 | -2.15888, 2 | -2.72673, z
0.40 3.48107, -1 | 2.90807, -1 |-3.40012, -1 | -2,4931l, 0 |-e.c88%0, O |-2.026870, 1 | ~4,36049, 1 | -8.16R40, 1| ~1.25898, 2 | <l.6ddB4, 2 | 4.9%821, 1
0.42 3.19%80, ~1 | 2.13247, -1 | ~5.72Y70, -1 | -3,11842, 0 |-9.48830, O |-2.26T40, 1 | ~4.5756T, 1 | =R 48785, 1| =-B.A2830, 1 | ~3,04725, 1 | 2.9310, 2
0.44 2.92620, 1 | 1.59091, -1 |-7.96420, -1 | -3.rDGGR, o |=-1.08211, 1 | =2.409859, 1 | =4.,45007, 1 | -8,1R020, 1| =3.58238, 0 | -l.43821, 2 | T,184%8, 2
0.48 2.86912, 1 | 6.8T472, -2 [ -1,00382, 0 | w4.20e72, 0 | ~1l.14689, 1 | -2,43071, 1 | -3.88544, 1 | =3,84254, 1 4.84B26, 1 3.526F0, 2 1,14148, 2
048 | 2.42713, -1 | R2.690Y5, ~5 | -l.63858, O | -4.s2B2D, o |-1.19578, 1 | -2.31854, 1 | -2,08828, 1| ~1.88851, O 1,43%91, 2 | p.s1980, 2 | 1.48880, 3
0,60 | 2.19988, -1 | -G.08485, -2 | ~1.6Y610, O | -4.04388, 0 | -1l.1884, 1 | «2.057H, 1 | =1.72508, 1 | -4,00740, 1 2.43137, 2 | 7.20128, 2 | 1,87588, 5
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TABLE 10,- iso)('r) = a(7) TU(T)—-I-B(T) !'(1') aos (v- - %)

(0} ~{o} ~({0) ~(0) {0} ~(0) =(o} ~(o) ~{a) ={o) 7o) (¢
T h/al'-r) !3’8(1) ISIB(T) Ir]ja('r) !9[8(1') !11/3(1.) !13/8(7) !15[3(7) 117,3(1') !lg/a(‘l') —m/a( )
<02 | 108883, O | L0138, C | D.8840%, -1 | 9.65T42, -1 | 0.39697, -1| G,16961, -1 | B8,58580, -1 | B8,71001, -1 | B.40086, -1 | h.26176,, -1 | B-07BIL, -1
<04 | 1.,08668, o 1.03078, o v.T8782, -1 9.29588, -2 B.82489, -1 B.37935, -1 T.506848, -1 T.BEASE, =1 1.17870, -1 | s.8u188, -1 8.45783, =1
<06 | 1.14018, © | 1.0627%, O | 9.72108, -} 8,97606, 1 | 6.28813, oL | 7.68204, -1 | T.08842, -1 | 6.22428, -1 | A.02470, -1 | 5.ES30B, -1 | B.1B869, -1
»08 | 1,20748, O | 1.08257, 0 | 9,023, -1 | 8.68712, -1 | T.TROOY, 1| 6.98833, -1 | 6,25436, -1 | B.81535, -1 | B.OAZO, -1 | 4.51209, -} | 4.04462, 1
«10 | 1,249, 0 | 1.22461, O | 9.78886, -1 | 3.48217, )} | Y.38845, ~L| 6.39780, -) | 5.66800, -} | 4.88518, -1 | 4.19060, ~ -1 | 5.03929, 1 | 3.18060, =1
12 | 141902, 0 | 1l.19084, ] 8,99512, -1 | B.38888, -1 T.04028, ~1 B.#0885, -1 | 4.98892, 1 | 4.18388, .1 | 349282, -1 | 2.55150, -1 | 2.4605), =1
JA4 | 1.8t764, O | 1.31583, O | 1,083, o | &.5M7S, -2 | 6.4705, -1| 6.81628, -1 | 4,5E8T2, -1 | 3.66850, -1 | 2.68529, .1 | 2.28s00, -1 | 1.95T32, .1
o186 | 1,815%0, 0| 1.43828, O | 1.13888, O | 9.00680, -1 | TY.139%9, 1| B.66301, ~1 | 4.47608, -1 | B.54418, -1 | 2.80630, -} | 2.22204, -1 | 1.76943, 1
«16 | 2.,21066, O | 1,71181, O | 1.52540, 0 | 1.02608, O | T.94448, -1 @.13654, -1 | 4.va53, -1 | 3.68743, -1 | 2.BBEOY, -1 | 2.21063, 1 | 1.70098, 1
o868 2.7TOST, O | 211930, 0 (-1.62088, O | 1.23970, © | 904880, 1| 7.25188, -1 | O5.54625, =1 | 4.24181, <) | 3B.24432, -1 | 2.48183, -1 | 1.897T78, 1
217 | 4,72637, O | 3.65034, O | 2,6908), O | 2.,03050, O | 1.5%193, -D| 1.18687, O | 8,744, -1 | s&.p821T, -1 | 4.0eBES, -1 | B.74629, o1 | 2.82885, )
-lf5| 5.51647, O | 247233, 0 | 1.84300, 0 | 1.3Y306, O | 1.024)3, -0| 7.0%408, <1 | G.eP08S, -1 | 4.060%, -1 | 3.10185, -1 | 2.36870, -1 | 1.75668, sl
«18 T, 88258, o 2.126385, [} 1506640, 0 1.15677, [/} B.BS11S, =1 8.19112, -1 4.63338, -1 5.42058, -1 2.5%277, -1 1.85008, -1 L3741, L
#1886 | £.83893, ¢ ! l.92812, 0 1.40845, 0 | 1.02363, 0| T.510M8, = 548305, -1 ! 4.00188, -1 | R.92025, -1 2.13081, -1 | l.BEals, -1 113348, =l
+19 | 24T344, O | LT9EL, O | 1.29637, 0 | 9,29689, 1 | 6.797E9, -2 | 4.91E34, -1 | B,68283, -1 | 2.5686Y, -1 | 1.8638l, ) | 1.33835, <1 | 9.0E840, 2
<196 | 2.38634, O | 1.69287, O | 1.21600, O | B.T2316, 1 | 6£.25436, ~1| 4.4%075, .1 | .3.20796, -1 [ 2.294m, -1 | 1.e4078, -1 | 1.19225, -1 | &.34970, -2
w20 | 2.28219, O | 1.61413, 0. | l.160%0, 0| 818401, 3 | BOLT4E, -1 $.12986, -1 | 2.92841, -1 | 2.074R9, <1 | 1.467M, -1 | 1.037T49, -1 | T.32630, ¢
o2l | 2.12639, 0| 1.4%837, 0 | 1.06068, O | T.3E548, <1 | 06.13841, 1 3.58072, -1 | 2.48968, -1 | 1l.72m42, -1 | 1.1%610, -1 | B.28505, -2  B5.T0186, =2
32 | 2.02800, O | 1.401T), ' O | 877566, -1 | 6.7888Y, 1 | 4.s2278, -3 216014, -1 | 2.15231, -1 | 1.48078, -1 | 9.38131, -2 | 6.66288, -2 | 4.4T08, =2
«£3 1.86765, Q 1.54728, o B.20208, -1 6.24106, -1 4.20888, -} 2.81732, -1 1.67089, =1 124384, -1 8.20170, <2 | b6.58186, -2 5.02008, -2
wfA | 190804, 0| 1.39651, O | B.73889, -1 | 5.82184, 1 | 3.88225, I 2.62666, ~1 | 1.64894,. -1 | l.0e088, -1 | &.e0l40, -p | 4.32992, -2 | 2.TITEE, 2
o5 | 1.860485, 0 | 1.26842, O | B.3M283, .1 | 5,47005, -} | B3.54363, -1 | 2.270M4, -1 | 1.42620, -1 | .9,08268, -2 | B.61201, -2 | Z.4634), -2 [ E2.,10062, ~2
o8 1.82898, o 1.221357, Q 8.00208, -1 5.15565, =1 3.28748, <1 2.04201, -1 1.28878, -1 T.80823, -2 4,027, -2 | 2.78m, -2 1.68618, oF
-2T | 1.80166, 0| l.19342, o T.TOT5l, <1 | 4.87004, -1 B3.0178Y, -1 1.88430, -1 109784, -1 8.44000, -% S.TiR0E, -2 | 2.)0283, -2 1,182682, . -2
-28 | lrmevz, O | 1,16882, O | T.ASRT3, -1 { 4,60400, -1 | 2.7m08, -1 1.86890, -1 | S.51444, -2 | 6.37T404, -2 | 2.96018, -2 | 1.58448, -2 | B,19EB8, =3
o2 | 1.T08T2, 0| l.loses, 0 | C.D418T, -1 | 4.21078, -1 2.48080, -1 1.42044, -1 7.91878, -k | 4.27607, -2 2,8518]1, -2 | 1.114e8, -2 | p.ZMBME, -3
«20 | 1.78M44, D [ 1128965, O | 8.35V19, <1 | 4.13747, -1 | 2.38499, 1| 1.%0084, -1 | s.eeav, -2 | 3.58060, <2 | 1.te078, -2 | 9.97e3@, -3 | B.20045, =B
L | L7375, O 1.08880, O | G.54014, -1 | 5.60788, 1 | 1.95152, -1 1,01M8, =1 | 4.92078, -2 | 2.19928, -2 | 8.T2T67, -3 | 2.71864, -3 | 2.50348, o3
% | l.TRdM, O 1.07462, 0 | €.15036, -1 | E5.30081, -1 | 1.05%8, -1 T.87615, <R | 3.22470, -2 | .15647, -B | 2.5T864, -3 | ~B.T4978, -B | .1,30608, -3
o33 | 1.7TM6E6, O | 1.00483, O | G.00438, 1 | B.92719, -1 | 1.34589, -1l | E.aem2e, -2 | 1.A%815, -2 | 3.48102, =3 | <1.48361, -5 | -2.40783, -3 | -l.99135, -3
«38 | 1.T4T8R7, O | 1,0884%, O | ®B.48882, -1 | 2,59239, -1 | 1.08439, -1 581771, -2 | T.42211, =3 | -2,1l680, -5 | -3.01146, -5 | -3.19604, -3 | ~2.08435, -5 |
A0 | 1,788ES, O | 1.02438, 0 | 5,15202, -1 | R.23507, -1 | B,0844), -3 2.01980, =B | -1.00608, -3 | -8.00232, -5 | «B.0B977, -5 | ~3.288Td, -3 | «L.Toed¥, 3
42 | 178614, O 1.01203, 0 { 4.80583, -1 [ L.90TOB; <1 { B.TEOR2, -2 | &.9885T -3 [ -T.24ee8, -3 | ~R.530%, 5 | B.54347, -3 F-Z.sel,, -3 | -louime,: s -3
o4 | 1.80833, 0] 1.00110, O | 4.,48081, 1 | 1.5%512, =1 | 2.64048, R | <4, 15441, -3 | ~1.117T78, -2 | -8.86186, -3 | —4,98382, -3 { ~2.28819, B ] «B.F7AEZ, =4
38 | 1.86306, O | 9.91200, -1 | 4,15481, ~1 | l.20083, -1 1.74711, =2 | <1,25488, -2 | =1,41808, -2 | -8.80350, -5 | ~4,15T12, -5 { ~1.G33T2, <3 | «3,89578, =4
~00 | 189097, 0| 981846, -1 | 3,38806, ~1l | 0.99198, -2 | 6.63943, 4| -1.98104, 2 | <1840, -2 | -B.0Z296, -B | -3.14823, -3 | ~8.31431, -4 | -1.28TR7, B
0 | 1l.93%27, 0| 9.72788, =1 3.00T87, -1 | 7.13620, =2 | ~2.40578, =2 | -2.43514, -2 | ~l.54181, =2 | L8.76851, =5 | ~R.0GTYE5, ~A | =2.23031, =4 | -2.51942)1, -4
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v [ ] L] [
=(a - -
TABLE 11.- zf‘,)(f) = BT} ¥ (r)}—>Fa(r) 7(1) o0e (vw + I)
gle) " o) 10 (a) ={a) 3(o) =(o) 3(e) ~(a) (o} =(a)
¥ T

v 1/3(” -SIB( ) LaryPNel E () Elgyalt) --11/3(') X salm) ¥ osEm B ypeit) P g/a(") T a17alm

.02 | 1,08628, o | 1.09382, 6| 1l.12180, 4| 1l.s620, o L.179%3, © l.20pm1, o | 1.2e0m, G| 1.BTR62, © | 1.30608, a | 1.3884T, & | J.3727%, @
04 1.14328, [/ 120401, 0| l.26801, 0 1, 82640, 0| 1l.s08%8, 0 148110, 0| 1.6RPA8, O | 1.84274, O | l.75004, © 182189, o| remsz2,, o
08 1.23482, L] 1,33730, O 1,44830, 4 1.56851, 0 1.89370, ] 1.83869, 0| 1.99238, o | 2.157TYT, © 2. A36ES, o | 2.55082, o | 2.74088, o
08 | 1.34702, o | 1.50270, 0| 1.67634, 0| 1.AT014, 0| Z2.0%21, © 2.,32140, 0| 2.59640, 0| 2.99849, O | B.2812, O | 3.604T1, 0| 4.02133, o
10 | 1.49108, o | 1.ms0l, 0| 1.976%8, O | 2.2TeNT, c| e.82ma2, o ROMN5, 0| RATB2Y, O | 4,005, 0 | 4.80TT2, O | £.%06E8, o | s.10818, ©
12 | 1.89082, 0 | 2.01465, O | E.4004%, 0 | £.580L4, D1 3.407T80, O | 4.08088, O | 4.9382%, O | B.T64RS, O | 6.86885, O | 618440, O | 9,9518¢, ©
o4 2.00387, 0 | 2.40118, 0 | 3.0R200, 0| 3.91.89, 1 4,717, 0O 6.88624, 0| 7.22049, O | Q.9%%06, O | 1.10613, 1| 1.38731, 1| 1.8018, 1
.16 2.193868, 0 2,89702, 0 3.66075, 0| 4.6207R, o Bo83874, 0 T.B%080, O | 9.50808, 0| 1.1Tes5, 1 1.4/4€5, 1 1.87508, 1 2.3880%, 1
.16 | 2.86818B, 0 | 5.48784, O | 4.762R0, O | 6,15143, 0| y,p44e2, O | 1,0%13, 1| 1.%%3, 1| 1.7172, L | 2.210m8, 1| 2.88632, 1 | s.eATEs, 1
165 | B3.82301, O | 4,73706, O | G.19864, O | 9,0PEM4, 0| 1.08B62, 1 1.3840, 1| 1.81009, 1| 2.36u69, 1 | 3.00441, 1| 4.04582, 1 | 6.28999, 1
JAT | B.13200, 0 | 4.16083, 0| 5.50817, 0| 7.20008, 0 $9.66300, 0O 1.28066, 1] L.e9729, 1| 2.24848, 1 | 2.981217, 1| 3.95118, 1 | B.23175, 1
TS| R.224%8, C | 2.98379, O | 4.00240, 0 | G.56B6E, 0 ¥,20117, O | 9.86907, O | 1.28667, L | 1,737, L | 2.3071, 1| 312600, 1 | 429288, 1
,18 | 1.983%87, o | 2.64805, O | 3I.5B888, O | 4.883C1, 0| B.E%062, © 8,028%§, O | 1.20885, 1 | l.esb01, 1 | 2.22008, 1 | 3.00721, 1| 4.07277, 1
L1856 | 1.80M9, © | 2.46608, O | 35 FT82E, O | 4.81%88, o | 6.3481, O B.88085, O | 1.,1Te28, 1| 1l.61087, 1 | 2.19em5, 1 | 300837, 1 | 4.09018, 1
.19 1.70780, 0 R.U8624, © 1 2.24848, 0| .45, 0| 6.16830, 0 B.ATABY, 0| 1.18851, 1 l.80188, 1 2,20045, 1 3.02048, 1 | 4.14323, 1
-188| 1.63709, O | 2.27T364, . O | 316467, Q| 437273, 0| 6.05463, O | e.5M431, o | 1.1ee00, 1| 1.58e28, 1 | r.1oess, 1 | 3.02608, 1 | €.15014, 1
«20 1.68284, o 2.211%4, o 3.08502, o] 4.29751, 0 5.97E08, 4] B.20083, 0 114793, 1 1.6AGA9, 1 2.18E81, 1 3.00408, 1 4,11712, 1
.21 | 1.50480, O | 2.12388, O | Z2.0M88, 0 20271, o 5.65504, O | 8.06785, O | 1,178, 1| 1l,58270, 1 | 2.08s20, 1| =2.81842, % | B.78387, 1
.22 | 1l.46362, 0 | 2,908, 0| Z.B0T31, O | 40742, 0} 56472, O 7.76108, © | 1.08005, 1| 1.59%T, 1 | r.ees1s, 1| z.3%1e8, 1 | 2.A3es3, 1
.28 1.40878, O £.01020, 0| 2.83288, o 5.95840, O | B.MT584, 0 7.18048, o | 9.81063, 0| 1.asv82, 1 1.34700, 1 1.59261, 1 1.%551%, 1
.24 | 1,37882, O ( 1.96707, O | Z.9E4TY, o | 3.76751, O | 4.99251, O | 6.52s42, O | T.avOE2, O | 7.76729, O | B.AA731, O | -9.5464l, -} |-5.5423%, ©
26 | 1,46388, O | 1.92738, O | Z.66T41, O | B.E5274, 0| 447279, O | 5.02005, o0 4.Rm8s, 0| 2.26240, O |-5.,52010, O | -2,28Mes, ! | -5.95408, 1
25 1,33878, 0 | 1.88884, 0| 2.5660M, 0| X.2M3T2, o 379822, O 3.5M84, © | 1.31193, O | -6.22684, O | -R,05B78, 1 | -B.259043, 1 | =l.17059, 2
27 | 1.51197, © | 1.85100, O | 2.46219, 0| 2.%6552, 0| 2.e436, O | 1,60128, O | -x.Pa4B4, O | -1.493%0, 41 |4.04265, 1 | -9.21696, 1 | -1.92880, 2
.28 | 1.30333, O 1. 81854, 8| &.3l804, 0 «36843, 0 1,80834, 0 | -1.019%2, 0 | -8.91958, 0| =2.70640, 1 | ~5.62494, 1| -l.41217, 2 | -2.86310, 2
29 | 1.29167, O | 176740, O | 2.183%5, 0| 2.08880, O | 6.47R85, -1 | -4.0608), O | ~1.6Y%60, 1 | -4,17829, 1 |-9.52252, 1 | -2.00088, 2 |-S.97822, =
W50 | 1.28157, O | 1.72123, 0 [ 1.98745, Q| 1.B41%, 0 | «8,7T091, =1 | ~7.64462, © | -2.38083, 1 | =5.90469, 1 | «1,30408, 2 | +2,88352, 2 | ~B.24788, 2
52 | 1l.2a572, O | 1.8%467, 0| L.paT37, B | 2,0206%, 1 | -4,45807, O | ~1.66X5, 1 | ~4.29026, 1 | -1.01213, 2 |-2.14086, 2 | -4.28185, 2 |«8.001%79,
«M | 1.25576, 0 | 1.6G323, O | 1.OMG05, 0 | -3.48088, 0 | -D.0BlZ3, O | -2.77068, 1 | -6.54998, 1 | -1.826B0, 2 |-3.08170, 2 | -5.84329, 2 |-l.0a319, 3
36 | L.24ssk, € | 128880, O | 4.16996, .1 | .3.64061, O | ~1,46620, 1 | ~4,09645, 1 [ 967201, 1| -2,04918, 2 |-3.0v017, 2 | -v.0e020, 2 [-l.2xe0, 3
o8 | 125773, O ( 1.20888, 0 | -3,30852, 1| -5.0BBEl, O ] -2,13585, 1 | ~8.66241, 1 | -1.202%5, 2 | -2.54008, 2 |-4.5%013, 2 | 7.15880, 2 |-8,383%0, 2
-40 1 1l.23885, O ( 1.,02886, O | ~1.20024, O | ~B.BO0S8, O | -2,B4887, 1 | -7.16425, 1 | -1.B8925, 2 | -2.B8345, 2 |-4.578%Y, 2 | -s.46ees, £ |-1.T59Y8, £
«42 | l.22815, O | 8.18688, -1 | -2.19844, O [ »2,20750, 1 | -3,830%0, 1 | -R.70278, 1 | -1.7EG24, 2 | -2.4R243, ¢ |-3.65640, 2 |-1.20098, 2 | L2514, B
o4 | 1,22484, O | 5.82101, -1 | -3,32082, O | -).F4729, ) | —4.44856, 1 | =l,00888, I |-1.88205, 2| -2,88678, 2z |-l.49105, 1| s.0zm7, 2 | 2.998v2, 3
«46 | 1.22215, O | S5.14785, -1 | ~4.E9635, 0 | -1.99628, 1 | -B.2Gl¢E, 1 | -, 01209, 2 | -1.8015R, 2 | -1,86TR7, z | 2.12¥00, 2 | 1.m1a87, 3 | 5.22668, 3
«8 | 1.21089, O | L.36241, & | -T.TI300, O | .2.Z268, 1 | -p.PPeas, 3 | -1,06270, 2 | -l.04AS6, 2 | ~R.M¥6T2, O | 7.20692, 2 | 2.8Pae4, 3 | T.B2202, 3
250 | 1.21782, O | <3.2475%, =1 | ~9.3783, O | -2.737TSY, 1 | -6,65570, 1 | =1.13618, 2 | «0.64508, 1| ~2.20886, 2 | 1.M528, 3 0328, 3 | 9.2MB2, B
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TABLE 18.- jg‘:{(f) = h(7) 2°{7)—»b(7) T°(T) coe (w -p- E)

=(o) =(o0) =(a) o} ~(o) =(o) ={0)

Fapaal™ | Tz | Ipgafn) s2al™ | Fazpalt) | Rggealv) | Fisa,a(7)
0 1.0618, © 1.0364, © 15096, 0 ¥,8433, =1 0.5077, -1 9.3583, -1 9.1248, -1 -1
V] 1.1566, o 1.0762, (1] 1.0238, 0 9.7212 -1 9,3308, -1 8.7648, -1 8.822%, -1 -1
0 1l.285%, O 1.1318, © 1.0450, O 9.5495, -1 0.9098, ~1 8.2269, =l 7.6084, -1 =1
o 1.3404, 0 1.2018, o} 1,0771, 0 0.8645, 8.6493, =1 ¥.7680, -1 8.9642, -1 -1
(1] 1.4949, 1] 1.2983, 0 1.1275, 0 9.7918, 8,5029, =l 7.5854, -1 8.4139, ~1 -1
1) 1.7224, Q 1.4455, 0 1.2132, 0 1,0182, 8,5458, -1 f.1718, -1 s.0188, -1 -1
1] 2.1204, 0 L.7189, 0 1.3863, 0 1.1197, 5.0607, -1 7.5168, -1 5.9131, -1 -1
0 24011, O 1,0726, @ 1,6817, O 1.2365, 97920, -1 7.TRRS, -1 6.1385, -1 -1
0 3.2768, O 2.6571, O 1.8844, O 1.5209," 1,149, 0 92,1175, , -1 7.0898, -1 -1
1] 4,2982, O $.3800, o 2.5698, O 1.9558 1,5022, 4] 31,1487, O B.7938, -1 -1
(1] T.5871, © §.7252, 0 |+4.2205, 0 3.2000, 2.4600, 1] 1.8562, O 1.4001, 1] -1
0 4.4252, © 3.M486, 0O 24996, O 1.8360 1.3812, o 1.0399, O 7.T630, -1 -1
a 5.4235, O 2.5318, O 1.8810, © 1.3540, 31,0229, 0 1.6616, =1 B.6884, -1 ~1
o 2.TOM, [} 2.0668, 0 1.6260, ¢ 1.1247, 82018, -1 6.108T, -1 £.4980, <1 =1
0 £.3710, 0 1.7402, [+] 1.2893, [} 9.4870, 8.9703, =1 5.174, -l 5. 7536, -1 =1
0 2,045, O L6686, O 1.1202, O 82404, 50464, -1 44298, -1 5.5031, -1 =1
[} 1.0004, 0 L.3442, 0 0.,5452, =1 7.8220, 5.3716, =] 4,0082, -l 2.9454, -1 -1
0 1.4642, O 1,054, 0 8.,2052, =) £.5498, 44502, =1 3.2408, -1 2.5463, -1 -1
1} 1.2128,, © 9,3628, -1 7.1075, -1 5.2818, 3.8602, <1 2.8018, -1 2,000, -1
0 1.0419, 0 8.3174, =1 6.3850, =1 4.7587, 34745, -1 2,448, -1 1.v127, -1
0

5.5498, =1 7.0474, -1 5.5284, -1 4.1170, 2.9800, -1 2.0957, -l l.4288, -1

1.578C, -l &.6788, -1 £.3822, -1 3.8065, 2,708, =1 1.008, -1 1.2606, -1
7.0728, -1 8,4208, -1 B.0845, -1 3.7538, z.6084, -1 174135, -1 1417, -1
8.7019, -1 8.2417, -1 49406, -1 3.5868, 24628, L | l.e234, -1 1.0584, -1
6.4314, -1 s.1189, -1 4.8889, -1 5.4558, 2.3068, -1 14979, -1 B.28%4, -2

8.247T8, <L 8.0458, -1 4.7384, =1 3.3575,
8.0p%0, -1 5.9844, -1 46910, -1 3.1176,
B.0ATE, -1 6.001¢, -k 4.478%0, -1 2.9088,
8.16568, -1 s.0628, -1 4.364, -1 2.7028,
g.%6228, -l 5.1547, -1 4.2180, =1 2.48681,
G.6B0T, -1 5.2625, -1 41562, =1 2.2843,
£.989T, -1 8.5868, -1 4.0154,, -1 8.0718,
To3411, -1 8.4808, -1 5.8738, -1 1.B587,
T7807, -1 8.5085, -} B.T242, -1 1.83581,
B.2464, -1 7.5486, -1 T.8610, -1 1.4191,
8,7878, -l T.542¢, -1 3.3825, -1 1.2008,

20, -1 1.5798, -1 8.5091,
19681, -1 | 1.1688, -l | 8.5189,
L.Tst, -1 9,6718, -2 | 4.9586,
1,6068, -1 | t.1268, -2 3.8119,
12994, -1 | 6.0080, -E £.4708,
1.0961, -1 | 4.538%, -2 1.51286,
%002, -£ 35,1024, -2 ¥.3606,
7.1974, -3 2,0181, -2 1.2420,
54745, -2 1.0025, -2 | -5.8581,
2.8897, -2 | -4.1007, =5 | -6.6184,
2.587s, -2 | -6.4212, -3 | -B.8539,

»l
-1
[
o
o
0
o
4}
0
0
o
-1
-1
-1
-1
-1
-1
P.4666, -1 7.6710, -1 5.8852, -1 48124, w1 8.2115, ~1 g.2M8, -1 1.6T66, -1
-1
-1
-
-1
=1
-1
-1
-1
-1
-1
«1
-1
-1
-1
-1
-1
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TABLE 15.- I_(_‘;)l(f) = n(t) !'"’(T)--r%h('f) 1=%{1) cos (w Bk E)
»
o) (4 #(o) o) ¢y (o) #o) o =(o) (o) 1) |z(o) (o) ~(o) (o)
T LAty LD !-318,1(") !\-512,1( ) !-713,1(') Poral” | Faigaafm | Ligysal® Fasse,(" | Eaee,a(7) | Faafaal™ Y nge, (M
.2 11180, © L.14E5, © 1.i7a8, o | 1.54B; © 1.258T,  © 12675, 0 1.2097, ©0 | 1.88%0, O | 1.%T, 0 | 1.a021, O 14379, ©
Ol 1.26%, O 1.5263, © 1.3988, O 411, © 1.3492, © L6218, O 1.7183, O 1.8055, O 1,5008, O 2,007t, © 21158, O
06 1,457, 0 1.5688, O l.eee2, © l.m261, O 19777, © 21418, O 25198, O 2.5121, O 212071, O 2,985, © 5100, O
+08 1.6688, @ 1.8600, © 2,010, © 2.3180, O 2.5887T, © 2.8823, O 3.2156, O 3.6871, O 4,007, O 44842, O 4.9802, O
.10 1.9820, O 2.28%2, O 2.6279, O 3.0259, O 4842, O 40119, 0 4,8195, O 5.3152, O 6.1248, 0 7.0625, © 81208, ©
.12 24453, 0 2.9136, 0 B.AT18, 4 4.1354, 0 4.b288, © E.0Y28, O 8.9072, 0 8,33573, 0 9.9340, © 1.1837, 1 1.4105, 1
4 Be2#6E, O 4.0185, 0O 4,967, © B.1458, 0 v.8035, © 9.4070, 0 1,138, 1 1,4308, 1 11813, 1 2.2088, 1 2728, 1
o156 5.4, © 5.0178, ¢© 8.3388, © 8.0051, O 1,007, 1 1.2v66, 1 1,8121, ) 2,0380, 1 2,574, 1 2476, 1 4,104, 1
«18 5.4801, Q9 7.0897, 0 9.1181, 4] 1.1778, 1 1,5210, 1 1.9646, 1 2,6372, 1 5.2170, 1 4,2824, 1 B.468%, 1 7.0801, 1
LE6{ 7.5105, O 9,A185, O 1.2889, I 1.6787, 1 2,1849, % 20688, 1 3.9522, ) 4.0080, 1 6,445, 1 8.3865, 1 1.0068, 2
17 6.8824, O 8.8295, O 11102, 1 16306, 1 2.0548, 1 27208, 1 T.0089, 1 47825, 1 8,5382, 1 A50, 1 Lum, 2
JATE | A.0228, [{] 5.3876, O 1.2158, 0 2.6663, © 1,2042, 1} 1,737, 1 2.3210, 1 3.1080, 1 4.1018, b B.5730, 1 V44650, 1
«18 .14, O 441980, 0 6.8882, O 7.6269, © 1.0278, 1} 1,384, L l.6848, 1 2.5112, 1 3.5812, -1 4.6638, 1 B.1268, 1
88! 2.5651, O 3.4666, O 4.6826, 4O 6.3228, © 8,5518, © J.A6H, 1 1.5500, 1 2.0885, 1 2,805, 1} .14, 1 G.08M, 1
19 2.1699, © 2,923, O 5.9, 0 6,2001, © v.1102, 0 9,5287, O 1.z718, 1 1,828, 1 2,247, 1 2.OT36, 1 2.9229, 1
85| 1.861T, O 2.5787, O 5.5248, O 1.4129, © 5.0082, O T.8445, © 1,081, } 1.2860, 1 1.6436, 1 20757, 1 25757, 1
«20 1.6103, © 2.1287, 0 t.8008, O 5.8008, O 4,MA3, 0 E.7800, O 7,1060, O 8.47%, O 9.6607, © 10877, 1 9.6511, O
o2l 1.2138, 0 1.6140, 0 l.8242, 0 2.0874, o 2,174, 0 1.88054, 0 8.2618, -1 | -l.5642, 0 | -8.6514, 0 | -1.8089, 1 | -3.2864, 1
.23 0.0427, 1 9,5800, -1 9.828%, -l 6.1244, 1l | -5.6641, -1 ( <2470, O | -8.,5094, O |a-l.4269,. 1 | -2.758, I |-61M8, 1 | -B.2215, 1
23 6.6000, -1 5.4114, <1 [+ L16€1}, -1 | -8.2108, ~1 | -5.0171, O | ~7.36%6, O | -1.838, 1 |-2.9663, 1 | -G.4Tab, 1 | -B.,7E10, 1 | ~l.5008, 2
o4 A4.5458, -1 1.2106, ~1 | -5.T453, ) -2.e024, 0 | -8.0821, 0 -1.2842, 1 -2,6814, 1 | -4.6019, 1 -0.7546, 1 =1.5816, 2 | -2,T029, 2
o25 2.9048, -1 | -2.7A10, -1 | -1.B228, O | «5.9543, O | -9.30m8, o0 «1,9106, ) | 35,7087, 1 |<6.9218, 1 | -1.2866, 2 | ~2,2314, 2 | -B.B915, 2
26 T.7487, =2 | ~A.5220, -1 | -2,332%5, O | ~G.0288, O | =1.2Y88, 1 | -2.68%0, 1 | -4.99%1, } | ~8.8200, 1 | -1.8914, 2 | -3.0083, & | -~B.2420, 2
o7 | ~T.5%87, -8 ] -1,0180, O | 1616, O | ~T.8%08, O | =l.6460, )} | -3.3188, 1 | ~6.4007, 1 | -l.1937, 2 | -2.1675, 2 | -5.B483, 2 | -8.600€, 2
28 | -2.1588, -1 | -1,5788, 0 | -4,0026, O | -P,288), O | ~2.0808, 1 | ~4.0877, 1 | ~7.6008, 1 | -~l.4T24, 2 | -2.6674, 2 | 4,715, 2 | -8,1%88, 2
o289 | ~B.4874, -) | ~L,7262, O | =4.8560, 0 | ~1,0408, 1 | w2.4401, 1 | ~4.028L, 1 | -9.4821, 1 |-l.956Y, 2 | ~B.181, 3 | -E.5489, 2 | 34BN, 2
-0 -4 .8578, =1 -2.,0787, 0 =6.T257, 0 ~1,3284, 1 ~2.8610, 1 =5.7640, 1 =1.1516, 2 -2.04£3, 2 =5.044), 2 ~6,2849, 2 ~=1,0489, .3
32 ~8,p916, ~1 -2,7621, 0 -T.2987, 0 ~1,T478, b3 =3.7284, 1 -7.4439, 1 =1.4104, 2 =-2.5448, 2 w4, 5684, H =~T,0807, 2 +1.0728, 3
o34 | ~P.2022, 1 | ~5.480%, O | -850, O | «2.2687, 1 | -4.5860, 1 | -R.0166, 1 | ~l.8s91, 2 | -2.8482, 2 | -4,5038, 2 | 7079, 2 | ~7.1088, 2
o8 | ~2.11%4, O | 42433, O | -l.s?, L | -2.583%, ! | -5.3870, 1 -1.0287, 2 | -1.79%63, 2 | -R.0037, 2 | -s.6TOR, 2 | -3.1446, 2 2.0631, 2
«28 -1,309%8, [+] -4 Ra86, [} ~1,3041, 1 ~2.9087, 1 -8,0735, 1 =1,002T, a ~1,7592, ] 2.2484, 2 1, 5832, 2 £.0880, 2 1.7608, 3
A0 | -1.0042, ¢ | -5.5834, o | -l.a888, 1 ~3.3628, 1 ~8.5651, 1 -1.1062, 2 ~1.4800, e | -1.0483, 2 2.1617, 2 1.2490, 3 58806, 3
42 | -1.7009, 0 | -6.2975, © | -1.875l, 1 | -3.6924, 1 | -£,781T, 1 -1.0062, 2 | -0.0984, 1 2,064, 2 T.5781, 2 2.4385, 3 6.1268, 3
i ~1.9017, o | -T.0632, o | -L.BBll, 1 ~5.9228, 1 ~2.8601, 1 -T.9219, 1 -3,8008, =1 26704, 2 1,373, 5 3.6887, ] T.0544, 3
A6 ~2.1084, o] ~T.R288, 0 | -2.0201, 1 -4,0817, 1 ~A,1500, 1 ~4.3841, 1 1.2381, ] 8,83508, 2 2,0621, 5 4.7035, 3 8.3822, 3
o#3 | -2,3272, O | -8.8257, O | -Z.A817, 1 | ~4.128, 1 | -6.1538, 1 64875, O | Z.6609, 2 10407, 2 2,6812, 5 £.0741, 3 6.3%01, 3
B0 -R.6515, [} -0.5288, [} -2,2206, 1 -4, 0822, 1 =%.5419, 1 7.2191, 1 4.6080, 2 1.4009, z 3.0108, 3 4.54685, 3 1.1683, 5
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Tigure 3.- w{r); u(r); v = 1.405
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Ffigure 168.- The behavior of the integral-curve; l‘(,l) (7).



